Effects of Cold on Morphogenesis

  • František Sehnal


Any temperature below that to which a species is best adapted may be regarded as cold. A brief exposure to cold may have a dramatic effect, but usually the affect is negligible; however, keeping insects at low temperature for longer periods of time always affects their mortality and development, and often other parameters as well. Performance at a low, but constant, temperature is usually different than at temperatures fluctuating around the same average value (see Chapter 9).


Juvenile Hormone Cold Shock Developmental Rate Wing Disc Diapause Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandrov, V. Y. 1977. Cells, Molecules and Temperature. Springer, Berlin.CrossRefGoogle Scholar
  2. Baker, J. E. 1983. Temperature regulation of larval size and development in Attagenus megatoma (Coleoptera: Dermestidae). Ann. Entomol. Soc. Am. 76:752–756.Google Scholar
  3. Beck, S. D. and R. K. Bharadwaj. 1972. Reversed development and cellular ageing in an insect. Science 178:1210–1211.CrossRefGoogle Scholar
  4. Becker, G. 1950. Metatelie bei Cerambycidenlarven. Zool. Jb. Physiol. 62:93–101.Google Scholar
  5. Behrens, W. 1985. Environmental aspects of insect dormancy. In Environmental Physiology and Biochemistry of Insects, ed. K. H. Hoffmann, pp. 67–94. Springer, Berlin.Google Scholar
  6. Bergerard, J. 1958. Intersexualité expérimentale chez Carausius morosus Br. Bull. Biol. Fr. Belg. 95:273–300.Google Scholar
  7. Bergerard, J. 1972. Environmental and physiological control of sex determination and differentiation. Annu. Rev. Entomol. 22:57–74.CrossRefGoogle Scholar
  8. Bhaskaran, G. 1981. Regulation of corpus allatum activity in last instar Manduca sexta larvae. In Current Topics in Insect Endocrinology and Nutrition, eds. G. Bhaskaran, S. Friedman, and J. G. Rodriguez, pp. 53–82. Plenum Press, New York.CrossRefGoogle Scholar
  9. Bhaskaran, G. and G. Jones. 1980. Neuroendocrine regulation of corpus allatum activity in Manduca sexta: the endocrine basis for starvation-induced supernumerary larval moult. J. Insect Physiol. 26:431–440.CrossRefGoogle Scholar
  10. Bückmann, D. 1963. Der Einfluss der Temperatur auf das Epidermispigment der Raupen von Cerura vinula L. Z. Naturforschg. 18:255–264.Google Scholar
  11. Bückmann, D. 1985. Color change in insects. In Pigment Cell 1985, eds. J. Bagnara, S. N. Klaus, E. Paul, and M. Schartl, pp. 209–217. University of Tokyo Press, Tokyo.Google Scholar
  12. Burkett, B. N. 1962. Temperature block of spinning and development in Galleria mellonella. Am. Zool. 2:396.Google Scholar
  13. Chandrakantha, J. and S. Mathavan. 1986. Changes in developmental rates and biomass energy in Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) reared on different foods and temperatures. J. Stored Prod. Res. 22:71–75.CrossRefGoogle Scholar
  14. Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.Google Scholar
  15. Chippendale, G. M. 1978. Behavior associated with the larval diapause of the southwestern corn borer, Diatraea grandiosella. Probable involvement of juvenile hormone. Ann. Entomol. Soc. Am. 71:901–905.Google Scholar
  16. Chippendale, G. M. 1983. Larval and pupal diapause. In Endocrinology of Insects, eds. R. G. H. Downer and H. Laufer, pp. 343–356. Alan R. Liss, New York.Google Scholar
  17. Clarke, K. U. 1967. Insects and temperature. In Thermobiology, ed. A. H. Rose pp. 293–352. Academic Press, London.Google Scholar
  18. Clarke, K. U. and P. A. Langley. 1963. Studies on the initiation of growth and moulting in Locusta migratoria migratorioides R. & F.—I. The time and nature of the initiating stimulus. J. Insect Physiol. 9:287–292.CrossRefGoogle Scholar
  19. Cymborowski, B. 1988. Effect of cooling stress on endocrine events in Galleria mellonella. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 203–212. Technical University of Wroclaw, Wroclaw.Google Scholar
  20. Cymborowski, B. and M. I. Bogus. 1976. Juvenilizing effect of cooling stress on Galleria mellonella. J. Insect Physiol. 22:669–672.CrossRefGoogle Scholar
  21. Danilevski, 1965. Photoperiodism and Seasonal Development of Insects. Oliver and Boyd. Edinburgh and London.Google Scholar
  22. Davis, K. T. and A. Shearn. 1976. In vitro growth of imaginai disks from Drosophila melanogaster. Science 196:438–439.Google Scholar
  23. de Kort, C. A. D. 1969. Hormones and the structural and biochemical properties of the flight muscles in the Colorado beetle. Meded. Landbouwhogesch. Wageningen 69:1–63.Google Scholar
  24. Denlinger, D. L. 1985. Hormonal control of diapause. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 8, eds. G. A. Kerkut and L. I. Gilbert, pp. 354–412. Pergamon Press, Oxford.Google Scholar
  25. Gierke, E. von 1932. Über die Häutungen und die Entwicklungsgeschwindigkeit der Larven der Mehlmotte Ephestia kühniella Zell. Roux’ Arch. 127:387–410.CrossRefGoogle Scholar
  26. Giersberg, H. 1928. Über den morphologischen und physiologischen Farbwechsel der Staubheuschrecke Dixippus (Carausius) morosus. Z. Vgl. Physiol. 7:657–665.CrossRefGoogle Scholar
  27. Goto, C., H. Tsutsuin, and K. Shimada. 1986. Effects of photoperiod and low temperature on larval development and freezing-tolerance of Xestia c-nigrum L. (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 21:143–152.Google Scholar
  28. Hagstrum, D. W. and G. A. Milliken. 1988. Quantitative analysis of temperature, moisture, and diet factors affecting insect development. Ann. Entomol. Soc. Am. 81:539–546.Google Scholar
  29. Hardie, J. and A. D. Lees. 1985. Endocrine control of polymorphism and polyphenism. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 8, eds. G. A. Kerkut and L. I. Gilbert, pp. 441–490. Pergamon Press, Oxford.Google Scholar
  30. Hashiguchi, T., N. Yoshitake, and N. Takahashi. 1965. Hormone determining the black pupal colour in the silkworm, Bombyx mori. Nature 206:215.CrossRefGoogle Scholar
  31. Hinton, H. E. 1976. Colour changes. In Environmental Physiology of Animals, eds. J. Blight, J. L. Cloudsley-Thompson, and A. G. Macdonald, pp. 390–412. Blackwell Scientific Publications, Oxford.Google Scholar
  32. Hoffmann, K. H. 1985. Metabolic and enzyme adaptation to temperature. In Environmental Physiology and Biochemistry of Insects, ed. K. H. Hoffman pp. 1–32. Springer, Berlin.CrossRefGoogle Scholar
  33. Honěk, A. 1973. Induction of winter coloration in Crysopa carnea Steph. Vestnik Cs. Spol. Zool. 37:253–257.Google Scholar
  34. Honěk, A. 1979. Regulation of diapause, number of instars and body growth in the moth species Amathes c-nigrum (Lepidoptera: Noctuidae). Entomol. Gen. 5:221–229.Google Scholar
  35. Honěk, A. 1987. Regulation of body size in a heteropteran bug, Pyrrhocoris apterus. Entomol. Exp. Appl. 44:257–262.CrossRefGoogle Scholar
  36. Horwath, K. L. and J. G. Duman. 1983. Induction of antifreeze protein production by juvenile hormone in larvae of the beetle, Dendroides canadensis. J. Comp. Physiol. 151:233–240.Google Scholar
  37. Hundertmark, A. 1936. Die Entwicklung der Flügel des Mehlkäfers Tenebrio molitor mit besonderer Berücksichtigung der Häutungsvorgänge. Z. Morph. Okol. Tiere 30:504–543.Google Scholar
  38. Ishizaki, H. 1958. Correlation between colour variation and diapause in the pupa of swallow tail. Papilio xuthus. Seiri-Seitai (Kyoto Univ., Fac. Sci.) 8:32–35.Google Scholar
  39. Key, K. H. L. and M. F. Day. 1954. A temperature-controlled physiological color response in the grasshopper Kosciuscola tristis Sjost. (Orthoptera: Acrididae). Aust. J. Zool. 2:309–339.CrossRefGoogle Scholar
  40. Kiguchi, K. 1972. Hormonal control of the coloration of larval body and the pigmentation of larval markings in Bombyx mori. (I) Endocrine organs affecting the coloration of larval body and the pigmentation of markings. J. Sericult. Sci. Tokyo 41:407–412.Google Scholar
  41. Kikukawa, S. and G. M. Chippendale. 1983. Seasonal adaptations of populations of the southwestern corn borer, Diatraea grandiosella, from tropical and temperate regions. J. Insect Physiol. 29:561–567.CrossRefGoogle Scholar
  42. Knight, J. D., J. S. Bale, F. Franks, S. F. Mathias, and J. G. Baust. 1986. Insect cold hardiness: supercooling points and pre-freeze mortality. Cryo-Lett 7:194–203.Google Scholar
  43. Koch, P. B. and D. Bückmann. 1987. Hormonal control of seasonal morphs by the timing of ecdysteroid release in Araschnia levana L. (Nymphalidae: Lepidoptera). J. Insect Physiol. 33:823–829.CrossRefGoogle Scholar
  44. Laugé, G. 1985. Sex determination: genetic and epigenetic factors. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 1, eds. G. A. Kerkut and L. I. Gilbert, pp. 295–318. Pergamon Press, Oxford.Google Scholar
  45. Lengerken, von H. 1932. Nachhinkende Entwicklung und ihre Folgeerscheinungen beim Mehlkäfer. Jena Z. Naturw. 67:260–274.Google Scholar
  46. Ludwig, D. 1956. Effects of temperature and parental age on the life cycle of the mealworm, Tenebrio molitor Linnaeus (Coleoptera, Tenebrionidae). Ann. Ent. Soc. Am. 49:12–15.Google Scholar
  47. Mala, J., Sehnal F., A. K. Kumaran, and N. A. Granger. 1987. Effects of starvation, chilling, and injury on endocrine gland function in Galleria mellonella. Arch. Insect Biochem. Physiol. 4:113–128.CrossRefGoogle Scholar
  48. Messenger, P. S. and N. E. Flitters. 1958. Effect of constant temperature environments on egg stage of three species of Hawaiian fruit flies. Ann. Entomol. Soc. Am. 51:109–119.Google Scholar
  49. Miya, K. and Y. Kobayashi. 1974. The embryonic development of Atrachya menetriesi Faldermann (Coleoptera, Chrysomelidae). II. Analysis of early development by ligation and low temperature treatment. J. Fac. Agri. Iwate Univ. 12:39–55.Google Scholar
  50. Nijhout, H. F. and C. M. Williams. 1974. Control of molting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): growth of the last-instar larva and the decision to pupate. J. Exp.Biol. 61:481–491.Google Scholar
  51. Novak, V. J. A. 1966. Insect Hormones. Methuen, London.Google Scholar
  52. Numata, H. and T. Hidaka. 1984. Role of the brain in post-diapause adult development in the swallowtail. Papilio xuthus. J. Insect Physiol. 30:165–168.CrossRefGoogle Scholar
  53. Osanai, M. and Y. Arai. 1962. Uber die Umfarbung der Raupen von Hestina japonica zu Beginn der Uberwinterung. I. Gen. Comp. Endocrinol. 2:311–316.CrossRefGoogle Scholar
  54. Oshiki, T. and S. Morohoshi. 1973. The control of growth and development. XX. Neurosecretion of the brain-corpora allata systems in the trimolters derived from tetramolting silkworms by temperature and moisture shocks. Proc. Japan. Acad. 49:353–358.Google Scholar
  55. Pener, M. P. 1983. Endocrine aspects of phase polymorphism in locusts. In Endocrinology of Insects, eds. G. H. Downer and H. Laufer, pp. 379–394. Alan R. Liss, New York.Google Scholar
  56. Pipa, R. L. 1976. Supernumerary instars produced by chilled wax moth larvae: endocrine mechanisms. J. Insect Physiol. 22:1641–1647.CrossRefGoogle Scholar
  57. Plantevin, G. 1975. Contribution a l’étude de la biologie de Galleria mellonella: mues, croissance et dévéloppement. Ann. Zool. Ecol. Anim. 7:365–397.Google Scholar
  58. Pullin, A. S. and J. S. Bale. 1988. Cause and effects of pre-freeze mortality in aphids. Cry. Lett 9:101–113.Google Scholar
  59. Raabe, M. 1982. Insect Neurohormones. Plenum Press, New York.CrossRefGoogle Scholar
  60. Radwan, W. and F. Sehnal. 1974. Inhibition of metamorphosis by juvenoids in Nauphoeta cinerea (Olivier). Experientia 30:615–618.CrossRefGoogle Scholar
  61. Ratte, H. T. 1985. Temperature and insect development. In Environmental Physiology and Biochemistry of Insects, ed. K. H. Hoffmann, pp. 33–66. Springer, Berlin.Google Scholar
  62. Rembold, H. and F. Sehnal. 1987. Juvenile hormones and their titer regulation in Galleria mellonella.Insect Biochem. 17:997–1001.CrossRefGoogle Scholar
  63. Remmert, H. 1980. Arctic Animal Ecology. Springer, Berlin.CrossRefGoogle Scholar
  64. Robertson, J. L. 1978. Chilled Galleria mellonella: salivary glands may mechanically inhibit development. J. Insect Physiol. 24:181–186.CrossRefGoogle Scholar
  65. Sano, I. 1967. Density effect and environmental temperature as the factors producing the active form of Callosobruchus maculatus (F.) (Coleoptera, Bruchidae). J. Stored Prod. Res. 2:187–195.CrossRefGoogle Scholar
  66. Sehnal, F. 1966. Kritisches Studium der Bionomie und Biometrik der in verschiedenen Lebensbedingungen gezüchteten Wachsmotte, Galleria mellonella L. (Lepidoptera). Z. Wiss. Zool. 174:53–82.Google Scholar
  67. Sehnal, F. 1985. Growth and life cycles. In Comprehensive Insect Physiology, Biochemistry andPharmacology, Vol. 2, eds. G. A. Kerkut and L. I. Gilbert, pp. 1–86. Pergamon Press, Oxford.Google Scholar
  68. Sehnal, F., J. P. Delbecque, P. Maröy, and J. Mala. 1986. Ecdysteroid titres during larval life and metamorphosis of Galleria mellonella. Insect Biochem. 16:157–162.CrossRefGoogle Scholar
  69. Sehnal, F. and N. A. Granger. 1975. Control of corpora allata function in larvae of Galleriamellonella. Biol. Bull. 148:106–116.CrossRefGoogle Scholar
  70. Sehnal, F., P. Maröy, and J. Mala. 1981. Regulation and significance of ecdysteroid titre fluctuations in lepidopterous larvae and pupae. J. Insect Physiol. 27:535–544.CrossRefGoogle Scholar
  71. Sehnal, F. and H. Rembold. 1985. Brain stimulation of juvenile hormone production in insect larvae. Experientia 41:684–685.CrossRefGoogle Scholar
  72. Sehnal, F. and H. A. Schneiderman. 1973. Action of the corpora allata and of juvenilizing substances on the larval-pupal transformation of Galleria mellonella L. (Lepidoptera). Acta. Ent. bohemoslov. 70:289–302.Google Scholar
  73. Seiler, J. 1920. Geschlechtschromosomenuntersuchungen an Psychiden I. Experimentelle Beeinflussung der geschlechtsbestimmenden Reifenteilungen bei Talaeporia tubulosa. Arch. Zellforsch. 15:249–268.Google Scholar
  74. Sharpe, P. J. H. and D. W. De Michele. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64:649–670.CrossRefGoogle Scholar
  75. Simonet, D.E. and R. L. Pienkowski. 1980. Temperature effect on development and morphometrics of the potato leafhopper. Environ. Entomol. 9:798–800.Google Scholar
  76. Stellwaag-Kittler, F. 1954. Zur Physiologie der Kaferhautung. Untersuchungen am Mehlkafer Tenebrio molitor L. Biol. Zbl. 73:12–49.Google Scholar
  77. Tuskus, P. M. and M. D. Atkins. 1973. Effect of temperature on occurrence of color phases in alfalfa caterpillars (Lepidoptera: Pieridae). Environ. Entomol. 2:619–622.Google Scholar
  78. Tower, W. L. 1903. The origin and development of the wings of Coleoptera. Zool. Jahrb. 17:519–571.Google Scholar
  79. Umeya, K. and T. Miyata. 1979. Effects of photoperiod and temperature on the maculation of the fall webworm moth, Hyphantria cunea Drury (Lepidoptera: Arctiidae). Jap. J. Appl. Ent. Zool. 23:17–21.CrossRefGoogle Scholar
  80. Veron, J. E. N. 1973. Physiological control of the chromatophores of Austrolestes annulosus (Odonota). J. Insect Physiol. 19:1689–1703.CrossRefGoogle Scholar
  81. Villee, C. A. 1943. Phenogenetic studies on the homeotic mutants of Drosophila melanogaster I. The effects of temperature on the expression of Aristapedia. J. Exp. Zool. 93:75–98.CrossRefGoogle Scholar
  82. Villee, C. A. 1944. Phenogenetic studies on the homeotic mutants of Drosophila melanogaster II. The effects of temperature on the expression of Proboscipedia. J. Exp. Zool. 96:85–102.CrossRefGoogle Scholar
  83. Wagner, T. L., H. Wu, P. J. H. Sharpe, and R. N. Coulson. 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77:208–225.Google Scholar
  84. Wigglesworth, V. B. 1934. The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and “metamorphosis.” Q. J. Microbiol. Sci. 77:191–222.Google Scholar
  85. Wigglesworth, V. B. 1952. Hormone balance and the control of metamorphosis in Rhodnius. J. Exp. Biol. 29:620–631.Google Scholar
  86. Wigglesworth, V. B. 1965. The Principles of Insect Physiology. Methuen, London.Google Scholar
  87. Wilson, F. and L. T. Woolcock. 1960. Environmental determination of sex in a parthenogenetic parasite. Nature 186:99–100.CrossRefGoogle Scholar
  88. Yamashita, O. 1983. Egg diapause. In Endocrinology of Insects, eds. G. H. Downer and H. Laufer, pp. 337–342. Alan R. Liss, New York.Google Scholar
  89. Zaslavski, V. A. 1988. Insect Development. Photoperiodic and Temperature Control. Springer, Berlin.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • František Sehnal

There are no affiliations available

Personalised recommendations