Abstract
Cold shock is the stress inflicted by a brief and rapid exposure to low, but nonfreezing, temperatures. When the shock is sufficiently severe, the organism sustains injury that may ultimately result in death. This form of stress has received little attention in insects, but it has been well recognized in bacteria, blue-green algae, yeasts, protozoans, higher plants, mammalian spermatozoa and embryos, and in cultures of plant and animal cells (review by Morris et al., 1983; Watson and Morris, 1987). Cold shock, also referred to as “direct chilling injury,” is dependent on the rate of cooling: greater injury is caused by more rapid cooling. The temperature threshold causing injury will vary between species and strains, but consistently this form of injury is observed in the absence of ice formation and at temperatures well above the supercooling point. The actual cause of injury elicited by cold shock remains elusive, but some form of membrane damage is likely. The normal integrity of the cell membrane may be altered by phase transitions of lipids within the membrane (Quinn, 1985) or by thermoelastic stress (McGrath, 1987).
Keywords
- Heat Shock
- Heat Shock Protein
- Cold Tolerance
- Juvenile Hormone
- Cold Shock
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Adedokun, T. A. and D. L. Denlinger. 1984. Cold-hardiness a component of the diapause syndrome in pupae of the flesh flies, Sarcophaga crassipalpis and S. Bullata. Physiol. Entomol. 9:361–364.
Ashburner, M. and J.J. Bonner. 1979. The induction of gene activity in Drosophila by heat shock. Cell 17:241–254.
Bultmann, H. 1986a. Heat shock responses in polytene food pad cells of Sarcophaga bullata. Chromosoma 93:347–357.
Bultmann, H. 1986b. Induction of a heat shock puff by hypoxia in polytene foot pad chromosomes of Sarcophaga bullata. Chromosoma 93:358–366.
Burton, V., H. K. Mitchell, P. Young, and N. S. Petersen. 1988. Heat shock protection against cold stress of Drosophila melanogaster. Mol. Cell. Biol. 8:3550–3552.
Catelli, M. G., N. Binart, I. Jung-Testas, J. M. Renoir, E. E. Baulieu, J. R. Feramisco, and W. J. Welch. 1985. The common 90-kd protein component of non-transformed’85’ steroid receptors is a heat shock protein. EMBO J. 4:3131–3135.
Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987a. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.
Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987b. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. Ann. Entomol. Soc. Am. 80:790–796.
Chen, C.-P., R. E. Lee, and D. L. Denlinger. 1990a. Cold shock and heat shock: a comparison of the protection generated by brief pretreatment at less severe temperatures. Physiol. Entomol. (in press).
Chen, C.-P., R. E. Lee, and D. L. Denlinger. 1990b. A comparison of the responses of tropical and temperate flies (Diptera: Sarcophagidae) to cold and heat stress. J. Comp. Physiol. B (in press).
Cheng, M. Y., F-U Hartl, J. Martin, R. A. Pollock, F. Kalousek, W. Neupert, E. M. Hallberg, R. L. Hallberg, and A. L. Horwich. 1989. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625.
Chirico, W. J., M. G. Waters, and G. Blobel. 1988. 70k heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–809.
Craig, E. A. 1985. The heat shock response. CRC Crit. Rev. Biochem. 18:239–280.
Czajka, M. C. and R. E. Lee, Jr. 1990. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J. Exp. Biol. 148:245–254.
Denlinger, D. L. 1972. Seasonal phenology of diapause in the flesh fly Sarcophaga bullata. Ann. Entomol Soc. Am. 65:410–414.
Denlinger, D. L. 1974. Diapause potential in tropical flesh flies. Nature 252:223–224.
Denlinger, D. L. 1978. The developmental response of flesh flies (Diptera: Sarcophagidae) to tropical seasons: variation in generation time and diapause in East Africa. Oecologia 35:105–107.
Denlinger, D. L. 1981. The physiology of pupal diapause in flesh flies. In Current Topics in Insect Endocrinology and Nutrition, eds. G. Bhaskaran, S. Friedman and J. G. Rodriguez, pp. 131–160. Plenum, New York.
Denlinger, D. L. 1985. Hormonal control of diapause. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 8, eds. G. A. Kerkut and L. I. Gilbert, pp. 353–412. Pergamon Press, Oxford.
Denlinger, D. L., M. Shukla, and D. L. Faustini. 1984. Juvenile hormone involvement in pupal diapause of the flesh fly Sarcophaga crassipalpis: regulation of infradian cycles of O2 consumption. J. Exp. Biol. 109:191–199.
Denlinger, D. L., J. Giebultowicz, and T. Adedokun. 1988. Insect diapause: dynamics of hormone sensitivity and vulnerability to environmental stress. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 309–324. Wroclaw Technical University Press, Wroclaw.
Deshaies, R. J., B. D. Koch, M. Werner-Washburne, E. A. Craig, and R. Schekman. 1988. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805.
Fink, K. and E. Zeuthen. 1980. Heat shock proteins in Tetrahymena studied under growth conditions. Exp. Cell Res. 128:23–30.
Garbe, J. C. and M. L. Pardue. 1986. Heat shock locus 93D of Drosophila melanogaster. a spliced RNA most strongly conserved in the intron sequence. Proc. Natl. Acad. Sci. USA 83:1812–1816.
Giebultowicz, J. M. and D. L. Denlinger. 1986. Role of the brain and ring gland in regulation of pupal diapause in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 32:161–166.
Guy, C. L., K. J. Niemi, and R. Brambl. 1985. Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. USA 82:3673–3677.
Henrich, V. C. and D. L. Denlinger. 1982. A maternal effect that eliminates pupal diapause in progeny of the flesh fly, Sarcophaga bullata. J. Insect Physiol. 28:881–884.
Joplin, K. H., G. D. Yocum, and D. L. Denlinger. 1990. Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. (in press).
Joplin, K. H. and D. L. Denlinger. 1990. Developmental and tissue specific control of the heat shock induced 70 kDa related proteins in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 36:239–249.
Ketola-Pirie, C. A. and B. G. Atkinson. 1983. Cold- and heat-shock induction of new gene expression in cultured amphibian cells. Can. J. Biochem. Cell Biol. 61:462–471.
Lee, R. E., Jr. and D. L. Denlinger. 1985. Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol. 10:309–315.
Lee, R. E., Jr., C-P. Chen, and D. L. Denlinger. 1987. A rapid cold-hardening process in insects. Science 238:1415–1417.
Lee, R. E., Jr., D. L. Denlinger, and C.-P. Chen. 1988. Insect cold-hardiness and diapause: regulatory relationships. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A.
Zabza, and D. L. Denlinger, pp. 243–262. Wroclaw Technical University Press, Wroclaw.
Lindquist, S. 1986. The heat shock response. Annu. Rev. Biochem. 55:1151–1191.
Maniak, M. and W. Nellen. 1988. A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Mol. Cell. Biol. 8:153–159.
McGrath, J. J. 1987. Cold shock: thermoelastic stress in chilled biological membranes. In Network Thermodynamics, Heat and Mass Transfer in Biotechnology, ed. K. R. Diller, pp. 57–66. United Engineering Center, New York.
Meyer, S. G. E. 1978. Effects of heat, cold, anaerobiosis and inhibitors on metabolite concentrations in larvae of Callitroga macellaria. Insect Biochem. 8:471–477.
Morris, G. J., G. Coulson, M. A. Meyer, and M. R. McLellan. 1983. Cold shock—a widespread cellular reaction. Cryo-Lett. 4:179–192.
Ohtaki, T. and M. Takahashi. 1972. Induction and termination of pupal diapause in relation to the change of ecdysone titer in the flesh fly, Sarcophaga peregrina. Jap. J. Med. Sci. Biol. 25:369–376.
Pardue, M. L., W. G. Bendena, and J. C. Garbe. 1987. Heat shock: puffs and response to environmental stress. In Results and Problems in Cell Differentiation. Vol. 14, ed. W. Henning pp. 121–131. Springer-Verlag, Berlin.
Petersen, N. S. and H. K. Mitchell. 1985. Heat shock proteins. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 10, eds. G. A. Kerkut and L. I. Gilbert, pp. 347–366. Pergamon Press, Oxford.
Pratt, W. B., E. R. Sanchez, E. H. Bresnick, S. Meshinchi, L. C. Scherrer, F. C. Dalman, and M. J. Welsh. 1989. Interaction of the glucocorticoid receptor with the Mr90,000 heat shock protein: an evolving model of ligand-mediated receptor transformation and translocation. Cancer Res. Suppl. 49:2222–2229.
Quinn, P. J. 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiol. 22:128–146.
Reading, D. S., R. L. Hallberg, and A. M. Myers. 1989. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337:655–659.
Richard, D. S. and D. S. Saunders. 1987. Prothoracic gland function in diapause and nondiapause Sarcophaga argyrostoma and Calliphora vicina. J. Insect Physiol. 33:385–392.
Rockey, S. J., B. B. Miller, and D. L. Denlinger. 1989. A diapause maternal effect in the flesh fly, Sarcophaga bullata: transfer of information from mother to progeny. J. Insect Physiol. 35:533–558.
Schlesinger, M. J. 1986. Heat shock proteins: the search for function. J. Cell Biol. 103:321–325.
Schlesinger, M. J., M. Ashburner, and A. Tissieres, eds. 1982. Heat Shock from Bacteria to Man. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
Sheldon, L. and E. M. Berger. 1988. Heat shock protein genes in Drosophila. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 347–358. Wroclaw Technical University Press, Wroclaw.
Walker, G. P. and D. L. Denlinger. 1980. Juvenile hormone and moulting hormone titers in diapause and nondiapause destined flesh flies. J. Insect Physiol. 26:661–6641
Walker, V. K., S. Whyard, G. R. Wyatt, and M. R. Kanost. 1986. Heat shock and gene transfer in locusts. J. Cell. Biochem. 10C:75.
Watson, P. F. and G. J. Morris. 1987. Cold shock injury in animal cells. In Temperature and Animal Cells, eds. K. Bowler and B. J. Fuller, pp. 311–340. Society for Experimental Biology, Cambridge.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1991 Chapman and Hall
About this chapter
Cite this chapter
Denlinger, D.L., Joplin, K.H., Chen, CP., Lee, R.E. (1991). Cold Shock and Heat Shock. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_6
Download citation
DOI: https://doi.org/10.1007/978-1-4757-0190-6_6
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4757-0192-0
Online ISBN: 978-1-4757-0190-6
eBook Packages: Springer Book Archive