Cold Shock and Heat Shock

  • David L. Denlinger
  • Karl H. Joplin
  • Cheng-Ping Chen
  • Richard E. LeeJr.


Cold shock is the stress inflicted by a brief and rapid exposure to low, but nonfreezing, temperatures. When the shock is sufficiently severe, the organism sustains injury that may ultimately result in death. This form of stress has received little attention in insects, but it has been well recognized in bacteria, blue-green algae, yeasts, protozoans, higher plants, mammalian spermatozoa and embryos, and in cultures of plant and animal cells (review by Morris et al., 1983; Watson and Morris, 1987). Cold shock, also referred to as “direct chilling injury,” is dependent on the rate of cooling: greater injury is caused by more rapid cooling. The temperature threshold causing injury will vary between species and strains, but consistently this form of injury is observed in the absence of ice formation and at temperatures well above the supercooling point. The actual cause of injury elicited by cold shock remains elusive, but some form of membrane damage is likely. The normal integrity of the cell membrane may be altered by phase transitions of lipids within the membrane (Quinn, 1985) or by thermoelastic stress (McGrath, 1987).


Heat Shock Heat Shock Protein Cold Tolerance Juvenile Hormone Cold Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adedokun, T. A. and D. L. Denlinger. 1984. Cold-hardiness a component of the diapause syndrome in pupae of the flesh flies, Sarcophaga crassipalpis and S. Bullata. Physiol. Entomol. 9:361–364.CrossRefGoogle Scholar
  2. Ashburner, M. and J.J. Bonner. 1979. The induction of gene activity in Drosophila by heat shock. Cell 17:241–254.CrossRefGoogle Scholar
  3. Bultmann, H. 1986a. Heat shock responses in polytene food pad cells of Sarcophaga bullata. Chromosoma 93:347–357.CrossRefGoogle Scholar
  4. Bultmann, H. 1986b. Induction of a heat shock puff by hypoxia in polytene foot pad chromosomes of Sarcophaga bullata. Chromosoma 93:358–366.CrossRefGoogle Scholar
  5. Burton, V., H. K. Mitchell, P. Young, and N. S. Petersen. 1988. Heat shock protection against cold stress of Drosophila melanogaster. Mol. Cell. Biol. 8:3550–3552.Google Scholar
  6. Catelli, M. G., N. Binart, I. Jung-Testas, J. M. Renoir, E. E. Baulieu, J. R. Feramisco, and W. J. Welch. 1985. The common 90-kd protein component of non-transformed’85’ steroid receptors is a heat shock protein. EMBO J. 4:3131–3135.Google Scholar
  7. Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987a. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.Google Scholar
  8. Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987b. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. Ann. Entomol. Soc. Am. 80:790–796.Google Scholar
  9. Chen, C.-P., R. E. Lee, and D. L. Denlinger. 1990a. Cold shock and heat shock: a comparison of the protection generated by brief pretreatment at less severe temperatures. Physiol. Entomol. (in press).Google Scholar
  10. Chen, C.-P., R. E. Lee, and D. L. Denlinger. 1990b. A comparison of the responses of tropical and temperate flies (Diptera: Sarcophagidae) to cold and heat stress. J. Comp. Physiol. B (in press).Google Scholar
  11. Cheng, M. Y., F-U Hartl, J. Martin, R. A. Pollock, F. Kalousek, W. Neupert, E. M. Hallberg, R. L. Hallberg, and A. L. Horwich. 1989. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625.CrossRefGoogle Scholar
  12. Chirico, W. J., M. G. Waters, and G. Blobel. 1988. 70k heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–809.CrossRefGoogle Scholar
  13. Craig, E. A. 1985. The heat shock response. CRC Crit. Rev. Biochem. 18:239–280.CrossRefGoogle Scholar
  14. Czajka, M. C. and R. E. Lee, Jr. 1990. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J. Exp. Biol. 148:245–254.Google Scholar
  15. Denlinger, D. L. 1972. Seasonal phenology of diapause in the flesh fly Sarcophaga bullata. Ann. Entomol Soc. Am. 65:410–414.Google Scholar
  16. Denlinger, D. L. 1974. Diapause potential in tropical flesh flies. Nature 252:223–224.CrossRefGoogle Scholar
  17. Denlinger, D. L. 1978. The developmental response of flesh flies (Diptera: Sarcophagidae) to tropical seasons: variation in generation time and diapause in East Africa. Oecologia 35:105–107.CrossRefGoogle Scholar
  18. Denlinger, D. L. 1981. The physiology of pupal diapause in flesh flies. In Current Topics in Insect Endocrinology and Nutrition, eds. G. Bhaskaran, S. Friedman and J. G. Rodriguez, pp. 131–160. Plenum, New York.CrossRefGoogle Scholar
  19. Denlinger, D. L. 1985. Hormonal control of diapause. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 8, eds. G. A. Kerkut and L. I. Gilbert, pp. 353–412. Pergamon Press, Oxford.Google Scholar
  20. Denlinger, D. L., M. Shukla, and D. L. Faustini. 1984. Juvenile hormone involvement in pupal diapause of the flesh fly Sarcophaga crassipalpis: regulation of infradian cycles of O2 consumption. J. Exp. Biol. 109:191–199.Google Scholar
  21. Denlinger, D. L., J. Giebultowicz, and T. Adedokun. 1988. Insect diapause: dynamics of hormone sensitivity and vulnerability to environmental stress. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 309–324. Wroclaw Technical University Press, Wroclaw.Google Scholar
  22. Deshaies, R. J., B. D. Koch, M. Werner-Washburne, E. A. Craig, and R. Schekman. 1988. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805.CrossRefGoogle Scholar
  23. Fink, K. and E. Zeuthen. 1980. Heat shock proteins in Tetrahymena studied under growth conditions. Exp. Cell Res. 128:23–30.CrossRefGoogle Scholar
  24. Garbe, J. C. and M. L. Pardue. 1986. Heat shock locus 93D of Drosophila melanogaster. a spliced RNA most strongly conserved in the intron sequence. Proc. Natl. Acad. Sci. USA 83:1812–1816.CrossRefGoogle Scholar
  25. Giebultowicz, J. M. and D. L. Denlinger. 1986. Role of the brain and ring gland in regulation of pupal diapause in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 32:161–166.CrossRefGoogle Scholar
  26. Guy, C. L., K. J. Niemi, and R. Brambl. 1985. Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. USA 82:3673–3677.CrossRefGoogle Scholar
  27. Henrich, V. C. and D. L. Denlinger. 1982. A maternal effect that eliminates pupal diapause in progeny of the flesh fly, Sarcophaga bullata. J. Insect Physiol. 28:881–884.CrossRefGoogle Scholar
  28. Joplin, K. H., G. D. Yocum, and D. L. Denlinger. 1990. Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. (in press).Google Scholar
  29. Joplin, K. H. and D. L. Denlinger. 1990. Developmental and tissue specific control of the heat shock induced 70 kDa related proteins in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 36:239–249.CrossRefGoogle Scholar
  30. Ketola-Pirie, C. A. and B. G. Atkinson. 1983. Cold- and heat-shock induction of new gene expression in cultured amphibian cells. Can. J. Biochem. Cell Biol. 61:462–471.CrossRefGoogle Scholar
  31. Lee, R. E., Jr. and D. L. Denlinger. 1985. Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol. 10:309–315.CrossRefGoogle Scholar
  32. Lee, R. E., Jr., C-P. Chen, and D. L. Denlinger. 1987. A rapid cold-hardening process in insects. Science 238:1415–1417.CrossRefGoogle Scholar
  33. Lee, R. E., Jr., D. L. Denlinger, and C.-P. Chen. 1988. Insect cold-hardiness and diapause: regulatory relationships. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A.Google Scholar
  34. Zabza, and D. L. Denlinger, pp. 243–262. Wroclaw Technical University Press, Wroclaw.Google Scholar
  35. Lindquist, S. 1986. The heat shock response. Annu. Rev. Biochem. 55:1151–1191.CrossRefGoogle Scholar
  36. Maniak, M. and W. Nellen. 1988. A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Mol. Cell. Biol. 8:153–159.Google Scholar
  37. McGrath, J. J. 1987. Cold shock: thermoelastic stress in chilled biological membranes. In Network Thermodynamics, Heat and Mass Transfer in Biotechnology, ed. K. R. Diller, pp. 57–66. United Engineering Center, New York.Google Scholar
  38. Meyer, S. G. E. 1978. Effects of heat, cold, anaerobiosis and inhibitors on metabolite concentrations in larvae of Callitroga macellaria. Insect Biochem. 8:471–477.CrossRefGoogle Scholar
  39. Morris, G. J., G. Coulson, M. A. Meyer, and M. R. McLellan. 1983. Cold shock—a widespread cellular reaction. Cryo-Lett. 4:179–192.Google Scholar
  40. Ohtaki, T. and M. Takahashi. 1972. Induction and termination of pupal diapause in relation to the change of ecdysone titer in the flesh fly, Sarcophaga peregrina. Jap. J. Med. Sci. Biol. 25:369–376.Google Scholar
  41. Pardue, M. L., W. G. Bendena, and J. C. Garbe. 1987. Heat shock: puffs and response to environmental stress. In Results and Problems in Cell Differentiation. Vol. 14, ed. W. Henning pp. 121–131. Springer-Verlag, Berlin.Google Scholar
  42. Petersen, N. S. and H. K. Mitchell. 1985. Heat shock proteins. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 10, eds. G. A. Kerkut and L. I. Gilbert, pp. 347–366. Pergamon Press, Oxford.Google Scholar
  43. Pratt, W. B., E. R. Sanchez, E. H. Bresnick, S. Meshinchi, L. C. Scherrer, F. C. Dalman, and M. J. Welsh. 1989. Interaction of the glucocorticoid receptor with the Mr90,000 heat shock protein: an evolving model of ligand-mediated receptor transformation and translocation. Cancer Res. Suppl. 49:2222–2229.Google Scholar
  44. Quinn, P. J. 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiol. 22:128–146.CrossRefGoogle Scholar
  45. Reading, D. S., R. L. Hallberg, and A. M. Myers. 1989. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337:655–659.CrossRefGoogle Scholar
  46. Richard, D. S. and D. S. Saunders. 1987. Prothoracic gland function in diapause and nondiapause Sarcophaga argyrostoma and Calliphora vicina. J. Insect Physiol. 33:385–392.CrossRefGoogle Scholar
  47. Rockey, S. J., B. B. Miller, and D. L. Denlinger. 1989. A diapause maternal effect in the flesh fly, Sarcophaga bullata: transfer of information from mother to progeny. J. Insect Physiol. 35:533–558.CrossRefGoogle Scholar
  48. Schlesinger, M. J. 1986. Heat shock proteins: the search for function. J. Cell Biol. 103:321–325.CrossRefGoogle Scholar
  49. Schlesinger, M. J., M. Ashburner, and A. Tissieres, eds. 1982. Heat Shock from Bacteria to Man. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  50. Sheldon, L. and E. M. Berger. 1988. Heat shock protein genes in Drosophila. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 347–358. Wroclaw Technical University Press, Wroclaw.Google Scholar
  51. Walker, G. P. and D. L. Denlinger. 1980. Juvenile hormone and moulting hormone titers in diapause and nondiapause destined flesh flies. J. Insect Physiol. 26:661–6641CrossRefGoogle Scholar
  52. Walker, V. K., S. Whyard, G. R. Wyatt, and M. R. Kanost. 1986. Heat shock and gene transfer in locusts. J. Cell. Biochem. 10C:75.Google Scholar
  53. Watson, P. F. and G. J. Morris. 1987. Cold shock injury in animal cells. In Temperature and Animal Cells, eds. K. Bowler and B. J. Fuller, pp. 311–340. Society for Experimental Biology, Cambridge.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • David L. Denlinger
  • Karl H. Joplin
  • Cheng-Ping Chen
  • Richard E. LeeJr.

There are no affiliations available

Personalised recommendations