Biochemistry of Cryoprotectants

  • Kenneth B. Storey
  • Janet M. Storey

Abstract

The role of polyhydric alcohols in cryoprotection is probably the most extensively studied feature of insect cold hardiness. The importance of glycerol as a cryoprotectant was first recognized by R. W. Salt after he and others linked the presence of high levels of glycerol with winter hibernation, diapause, or freezing survival (Salt, 1957, 1959, 1961; Wyatt and Kalf, 1957; Chino, 1957). Over the last 30 years, literally hundreds of publications have described the occurrence of glycerol or other polyols in both freeze-tolerant and freeze-avoiding insects (for reviews, see Salt, 1961; Hansen, 1980; Ring, 1980; Sømme, 1982; Miller, 1982; Duman et al., 1982; Baust et al., 1982; Zachariassen, 1985; Lee et al., 1986; Storey and Storey, 1988). Glycerol is by far the most common cryoprotectant, but sorbitol, mannitol, ribitol, erythritol, threitol, and ethylene glycol also occur along with a selection of sugars, including trehalose, sucrose, glucose, and fructose (see Fig. 4.1) (Miller and Smith, 1975; Hayakawa and Chino, 1981; Sømme, 1982; Gehrken, 1984; Zachariassen, 1985; Hamilton et al., 1985; Storey and Storey, 1988). Glycerol contents that range as high as 25% of the fresh weight of the animal have been reported with polyol concentrations in excess of 2 M in the body fluids of many species (Salt, 1961; Ring, 1981; Zachariassen, 1985; Storey and Storey, 1988). The majority of species produce only a single polyol, but dual or even multiple component systems also occur, glycerol plus sorbitol being the most common pairing (Storey and Storey, 1988).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baust, J. G. and K. L. Miller. 1972. Influence of low temperature acclimation on cold hardiness in Pterostichus brevicornis. J. Insect Physiol. 18:1935–1947.CrossRefGoogle Scholar
  2. Baust, J. G. and R. E. Lee. 1981. Divergent mechanisms of frost hardiness in two populations of the gall fly, Eurosta solidaginis. J. Insect Physiol. 27:485–490.CrossRefGoogle Scholar
  3. Baust, J. G., R. E. Lee, and R. A. Ring. 1982. The physiology and biochemistry of low temperature tolerance in insects and other terrestrial arthropods: a bibliography. Cryo-Lett. 3:191–212.Google Scholar
  4. Bergmeyer, H. U., W. Gruber, and I. Gutman. 1974. D-Sorbitol. In Methods of Enzymatic Analysis, ed., H. U. Bergmeyer, 2nd ed., pp. 1323–1326. Academic Press, New York.Google Scholar
  5. Buchanan, G. W. and K. B. Storey. 1983. In vivo detection of cryoprotectants and lipids in overwintering larvae using carbon-13 nuclear magnetic resonance. Can. J. Biochem. Cell. Biol. 61:1260–1264.CrossRefGoogle Scholar
  6. Chen, C-P., D. L. Denlinger, and R. E. Lee. 1987. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.Google Scholar
  7. Chino, H. 1957. Conversion of glycogen to sorbitol and glycerol in the diapause egg of the Bombyx silkworm. Nature 180:606–607.CrossRefGoogle Scholar
  8. Chino, H. 1960. Enzymatic pathways in the formation of sorbitol and glycerol in the diapausing egg of the silkworm, Bombyx mori. I. On the polyol dehydrogenases. J. Insect Physiol. 5:1–15.CrossRefGoogle Scholar
  9. Chino, H. 1961. Enzymatic pathways in the formation of sorbitol and glycerol in the diapausing egg of the silkworm, Bombyx mori. II. On the phosphatases. J. Insect Physiol. 6:231–240.CrossRefGoogle Scholar
  10. Churchill, T. A. and K. B. Storey. 1989a. Regulation of glycerol biosynthesis in a freeze avoiding insect. J. Comp. Physiol. 159:461–472.Google Scholar
  11. Churchill, T. A. and K. B. Storey. 1989b. Seasonal variation in the temperature-stimulated inter-conversion of glycogen and glycerol pools in a freeze avoiding moth larva. Cryo-Lett. 10:127–136.Google Scholar
  12. Duman, J. G. 1980. Factors involved in the overwintering survival of the freeze tolerant beetle, Dendroides canadensis. J. Comp. Physiol. 136:53–59.Google Scholar
  13. Duman, J. G., K. L. Horwath, A. Tomchaney, and J. L. Patterson. 1982. Antifreeze agents of terrestrial arthropods. Comp. Biochem. Physiol. 73A:545–555.CrossRefGoogle Scholar
  14. Eggstein, M. and E. Kuhlmann. 1974. Triglycerides and glycerol: determination after alkaline hydrolysis. In Methods of Enzymatic Analysis, ed. H. U. Bergmeyer, 2nd ed., pp. 1825–1831. Academic Press, New York.Google Scholar
  15. Friedman, S. and T-F. Hsueh. 1979. Insect trehalose-6-phosphatase: the unactivated type, as illustrated in Periplaneta americana, and a survey of the ordinal distribution of the two presently known types. Comp. Biochem. Physiol. 64:339–344.Google Scholar
  16. Furusawa, T., M. Shikata, and O. Yamashita. 1982. Temperature dependent sorbitol utilization in diapause eggs of the silkworm, Bombyx mori. J. Comp. physiol. 147:21–26.Google Scholar
  17. Furusawa, T., K. Shimizu, and T. Yano. 1987. Polyol accumulation in the non-diapause eggs of the silkworm, Bombyx mori. J. Seric. Sci. Jap. 56:150–156.Google Scholar
  18. Gade, G. 1984. Anaerobic energy metabolism. In Environmental Physiology and Biochemistry of Insects, ed. K. H. Hoffmann, pp. 119–136. Springer Verlag, Heidelberg.CrossRefGoogle Scholar
  19. Gehrken, U. 1984. Winter survival of an adult bark beetle Ips acuminatus Gyll. J. Insect Physiol. 30:421–429.CrossRefGoogle Scholar
  20. Hamilton, M. D., R. R. Rojas, and J. G. Baust. 1986. Juvenile hormone modulation of cryoprotectant synthesis in Eurosta solidaginis by a component of the endocrine system. J. Insect Physiol. 32:971–979.CrossRefGoogle Scholar
  21. Hamilton, R. L., D. E. Mullins, and D. M. Orcutt. 1985. Freezing tolerance in the wood roach, Cryptocercus punctulatus. Experientia 41:1535–1537.CrossRefGoogle Scholar
  22. Hansen, T. 1980. Glycerol content and cold-hardiness in freeze tolerant insects. Eesti. NSV. Tead. Akad. Tiom. Biol. 29:113–118.Google Scholar
  23. Hayakawa, Y. 1985. Activation mechanism of insect fat body Phosphorylase by cold. Insect Biochem. 15:123–128.CrossRefGoogle Scholar
  24. Hayakawa, Y. and H. Chino. 1981. Temperature-dependent interconversion between glycogen and trehalose in diapausing pupae of Philosamia cynthia ricini and pryeri. Insect Biochem 11:41–47.Google Scholar
  25. Hayakawa, Y. and H. Chino. 1982a. Phosphofructokinase as a possible key enzyme regulating glycerol or trehalose accumulation in diapausing insects. Insect Biochem 12:639–642.CrossRefGoogle Scholar
  26. Hayakawa, Y. and H. Chino. 1982b. Temperature-dependent activation or inactivation of glycogen Phosphorylase and synthase of fat body of the silkworm Philosamia cynthia: the possible mechanism of the temperature-dependent interconversion between glycogen and trehalose. Insect Biochem 12:361–366.CrossRefGoogle Scholar
  27. Hayakawa, Y. and H. Chino. 1983. Insect fat body Phosphorylase kinase is Ca2+-independent and acts even at 0°C. Biochim. Biophys. Acta 746:14–17.CrossRefGoogle Scholar
  28. Hendrix, D. L., R. E. Lee, J. G. Baust, and H. James. 1981. Separation of carbohydrates and polyols by a radially compressed high-performance liquid chromatographic silica column modified with tetraethylenepentamine. J. Chromatogr. 210:45–53.CrossRefGoogle Scholar
  29. Hers, H-G. 1976. The control of glycogen metabolism in the liver. Annu. Rev. Biochem. 45:167–189.CrossRefGoogle Scholar
  30. Horwath, K. L. and J. G. Duman. 1983a. Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis. J. Insect Physiol. 29:907–917.CrossRefGoogle Scholar
  31. Horwath, K. L. and J. G. Duman. 1983b. Induction of antifreeze protein production by juvenile hormone in larvae of the beetle, Dendroides canadensis. J. Comp. Physiol. 151:233–240.Google Scholar
  32. Hue, L. and M. H. Rider. 1987. Role of fructose-2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem. J. 245:313–324.Google Scholar
  33. Kageyama, T. 1976. Pathways of carbohydrate metabolism in the eggs of the silkworm, Bombyx mori. Insect Biochem. 6:507–511.Google Scholar
  34. Kageyama, T., S. Y. Takahashi, and E. Ohnishi. 1973. Acid phosphatases in the eggs of the silkworm Bombyx mori: purification and properties. Insect Biochem. 3:373–388.CrossRefGoogle Scholar
  35. Kelleher, M. J., J. Rickards, and K. B. Storey. 1987. Strategies of freeze avoidance in larvae of the goldenrod gall moth Epiblema scudderiana: laboratory investigations of temperature cues in the regulation of cold hardiness. J. Insect Physiol. 33:443–450.CrossRefGoogle Scholar
  36. Kukal, O., A. S. Serianni, and J. G. Duman. 1988. Glycerol metabolism in a freeze tolerant Arctic insect: an in vivo 13C NMR study. J. Comp. Physiol. 158:175–183.Google Scholar
  37. Lee, R. E., R. A. Ring, and J. G. Baust. 1986. Low temperature tolerance in insect and other terrestrial arthropods: bibliography II. Cryo-Lett. 7:113–126.Google Scholar
  38. Lee, R. E., C-P. Chen, M. H. Meacham, and D. L. Denlinger. 1987. Ontogenetic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J. Insect Physiol. 33:587–592.CrossRefGoogle Scholar
  39. Loomis, S. H., J. F. Carpenter, and J. H. Crowe. 1988. Identification of strombine and taurine as cryoprotectants in the intertidal bivalve Mytilus edulis. Biochim. Biophys. Acta 943:113–118.CrossRefGoogle Scholar
  40. Lowry, O. H. and J. V. Passonneau. 1972. A Flexible System of Enzymatic Analysis. Academic Press, New York.Google Scholar
  41. Meyer, S. G. E. 1978. Effects of heat, cold, anaerobiosis and inhibitors on metabolite concentrations in larvae of Callitroga macellaria. Insect Biochem. 6:471–411.CrossRefGoogle Scholar
  42. Miller, L. K. 1982. Cold-hardiness strategies of some adult and immature insects overwintering in Alaska. Comp. Biochem. Physiol. 73:595–604.CrossRefGoogle Scholar
  43. Miller, L. K. and J. S. Smith. 1975. Production of threitol and sorbitol by an adult insect: association with freezing tolerance. Nature 258:519–520.CrossRefGoogle Scholar
  44. Morrissey, R. E. and J. G. Baust. 1976. The ontogeny of cold tolerance in the gall fly, Eurosta solidaginis. J. Insect Physiol. 22:431–437.CrossRefGoogle Scholar
  45. Newsholme, E. A. and C. Start. 1973. Regulation in Metabolism. Wiley-Interscience, New York.Google Scholar
  46. Nordin, J. H., Z. Cui, and C-M. Yin. 1984. Cold-induced glycerol accumulation by Ostrinia nubilalis larvae is developmentally regulated. J. Insect Physiol. 30:563–566.CrossRefGoogle Scholar
  47. Pilkis, S. J., T. H. Claus, P. D. Kountz, and M. R. El-Maghrabi. 1987. Enzymes of the fructose 6-phosphate-fructose 1,6-bisphosphate substrate cycle. In The Enzymes, eds. P. D. Boyer and E. G. Krebs, Vol. 18, 3rd ed., pp. 3–46. Academic Press, New York.Google Scholar
  48. Pio, C.J. and J. G. Baust. 1988. Effects of temperature cycling on cryoprotectant profiles in the goldenrod gall fly, Eurosta solidaginis (Fitch). J. Insect Physiol. 34:581–586.CrossRefGoogle Scholar
  49. Rickards, J., M. J. Kelleher, and K. B. Storey. 1987. Strategies of freeze avoidance in larvae of the goldenrod gall moth, Epiblema scudderiana: winter profiles of a natural population. J. Insect Physiol. 33:443–450.CrossRefGoogle Scholar
  50. Ring, R. A. 1980. Insects and their cells. In Low Temperature Preservation in Medicine and Biology, eds. M. J. Ashwood-Smith and J. Farrant, pp. 187–217. Pitman Medical Publishing Co., Tunbridge Wells, United Kingdom.Google Scholar
  51. Ring, R. A. 1981. The physiology and biochemistry of cold tolerance in Arctic insects. J. Therm. Biol. 6:219–229.CrossRefGoogle Scholar
  52. Rojas, R. R., R. E. Lee, T. A. Luu, and J. G. Baust. 1983. Temperature dependence-independence of antifreeze turnover in Eurosta solidaginis (Fitch). J. Insect Physiol. 29:865–869.CrossRefGoogle Scholar
  53. Rojas, R. R., R. E. Lee, and J. G. Baust. 1986. Relationship of environmental water content to glycerol accumulation in the freezing tolerant larvae of Eurosta solidaginis (Fitch). Cryo-Lett. 7:234–245.Google Scholar
  54. Rudolph, A. S. and J. H. Crowe. 1985. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiol. 22:367–377.CrossRefGoogle Scholar
  55. Salt, R. W. 1957. Natural occurrence of glycerol in insects and its relation to their ability to survive freezing. Can Entomol. 89:491–494.CrossRefGoogle Scholar
  56. Salt, R. W. 1959. Role of glycerol in the cold-hardening of Bracon cephi (Gahan). Can. J. Zool. 37:59–69.CrossRefGoogle Scholar
  57. Salt, R. W. 1961. Principles of insect cold hardiness. Annu. Rev. Entomol. 6:55–74.CrossRefGoogle Scholar
  58. Shimada, K. 1982. Glycerol accumulation in developmentally arrested pupae of Papilio machaon obtained by brain removal. J. Insect Physiol. 28:975–978.CrossRefGoogle Scholar
  59. Shimada, K., S. F. Sakagami, K. Honma, and H. Tsutsui. 1984. Seasonal changes of glycogen/trehalose contents, supercooling points and survival rate in mature larvae of the overwintering soybean pod borer Leguminivora glycinivorella. J. Insect physiol. 5:369–373.CrossRefGoogle Scholar
  60. Sømme, L. 1964. Effects of glycerol on cold hardening in insects. Can. Entomol. 95:1190–1202.Google Scholar
  61. Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. 73:519–543.CrossRefGoogle Scholar
  62. Sonobe, H., A. Matsumoto, Y. Fukuzaki, and S. Fujiwara. 1979. Carbohydrate metabolism and restricted oxygen supply in the eggs of the silkworm, Bombyx mori. J. Insect Physiol. 25:381–388.Google Scholar
  63. Storey, J. M. and K. B. Storey. 1983. Regulation of cryoprotectant metabolism in the overwintering gall fly larvae, Eurostata solidaginis: temperature control of glycerol and sorbitol levels. J. Comp. Physiol. 149:495–502.Google Scholar
  64. Storey, J. M. and K. B. Storey. 1986. Winter survival of the gall fly larva, Eurosta solidaginis: profiles of fuel reserves and cryoprotectants in a natural population. J. Insect Physiol. 32:549–556.CrossRefGoogle Scholar
  65. Storey, J. M. and K. B. Storey. 1990. Carbon balance and energetics of cryoprotectant synthesis in a freeze tolerant insect: responses to perturbation by anoxia. J. Comp. Physiol. 160:77–84.Google Scholar
  66. Storey, K. B. 1982. Phosphofructokinase from the overwintering gall fly larva, Eurosta solidaginis: control of cryoprotectant polyol synthesis. Insect Biochem. 12:501–505.CrossRefGoogle Scholar
  67. Storey, K. B. 1983. Metabolism and bound water in overwintering insects. Cryobiol. 20:365–370.CrossRefGoogle Scholar
  68. Storey, K. B. 1988. Suspended animation: the molecular basis of metabolic depression. Can. J. Zool. 66:124–132.CrossRefGoogle Scholar
  69. Storey, K. B. and J. M. Storey. 1981. Biochemical strategies of overwintering in the gall fly larva, Eurosta solidaginis: effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. J. Comp. Physiol. 144:191–199.Google Scholar
  70. Storey, K. B. and J. M. Storey. 1988. Freeze tolerance in animals. Physiol. Rev. 68:27–84.Google Scholar
  71. Storey, K. B., J. G. Baust, and J. M. Storey. 1981a. Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. J. Comp. Physiol. 144:183–190.Google Scholar
  72. Storey, K. B., I. R. A. Park, and J. M. Storey. 1981b. Isozyme composition and low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. Cryo-Lett. 2:279–284.Google Scholar
  73. Takahashi, S. Y., T. Kajiura, T. Kageyama, and E. Ohnishi. 1974. Polyol dehydrogenases from silkworm eggs: purification and properties. Insect Bochem. 4:33–45.CrossRefGoogle Scholar
  74. Tsumuki, H. and K. Kanehisa. 1978. Carbohydrate content and oxygen uptake in larvae of the rice stem borer, Chilo suppressalis Walker. Ber. Ohara Inst. Landw. Biol. Okayama Univ. 17:95–110.Google Scholar
  75. Tsumuki, H. and K. Kanehisa. 1980. Changes in enzyme activities related to glycerol synthesis in hibernating larvae of the rice stem borer, Chilo suppressalis Walker. Appl. Entomol. Zool. 15:285–292.Google Scholar
  76. Tsumuki, H. and K. Kanehisa. 1981a. The fate of 14C-glycerol in the rice stem borer, Chilo suppressalis Walker (Lepidoptera, Pyralidae). Appl. Entomol. Zool. 16:200–208.Google Scholar
  77. Tsumuki, H. and K. Kanehisa. 1981b. Effect of JH and ecdysone on glycerol and carbohydrate contents in diapausing larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera, Pyralidae). Appl. Entomol. Zool. 16:7–15.Google Scholar
  78. Tsumuki, H. and K. Kanehisa. 1984. Phosphatases in the rice stem borer, Chilo suppressalis Walker (Lepidoptera; Pyralidae): some properties and changes of the activities during hibernation. Cryobiol. 21:177–182.CrossRefGoogle Scholar
  79. Tsumuki, H., R. R. Rojas, K. B. Storey, and J. G. Baust. 1987. The fate of [14C]glucose during cold-hardening in Eurosta solidaginis (Fitch). Insect Biochem 17:347–352.CrossRefGoogle Scholar
  80. van der Laak, S. 1982. Physiological adaptations to low temperature in freezing-tolerant Phyllodecta laticollis beetles. Comp. Biochem. Physiol. 73:613–620.CrossRefGoogle Scholar
  81. Wood, F. E. and J. H. Nordin. 1976. Studies on the low temperature induced biogenesis of glycerol by adult Protophormia terranovae. J. Insect Physiol. 22:1665–1673.CrossRefGoogle Scholar
  82. Wood, F. E. and J. H. Nordin. 1980. Activation of the hexose monophosphate shunt during cold-induced glycerol accumulation by Protophormia terranovae. Insect Biochem. 10:87–93.CrossRefGoogle Scholar
  83. Wood, F. E., P. Mahar, and J. H. Nordin. 1977. Metabolite levels and enzyme activities in Protophormia terranovae during low temperature induced glycerol accumulation. Insect Biochem. 7:141–149.CrossRefGoogle Scholar
  84. Wyatt, G. R. and G. F. Kalf. 1957. The chemistry of insect hemolymph. II. Trehalose and other carbohydrates. J. Gen. Physiol. 40:833–847.CrossRefGoogle Scholar
  85. Yaginuma, T. and O. Yamashita. 1978. Polyol metabolism related to diapause in Bombyx eggs: different behaviour of sorbitol from glycerol during diapause and post-diapause. J. Insect Physiol. 24:147–154.CrossRefGoogle Scholar
  86. Yaginuma, T. and O. Yamashita. 1979. NAD-dependent sorbitol dehydrogenase activity in relation to the termination of diapause in eggs of Bombyx mori. Insect Biochem. 9:547–553.Google Scholar
  87. Yamashita, O. and K. Hasegawa. 1984. Embryonic diapause. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology, eds. G. A. Kerkut and L. I. Gilbert, pp. 407–434. Pergamon Press, Oxford.Google Scholar
  88. Yamashita, O., K. Suzuki, and K. Hasegawa. 1975. Glycogen Phosphorylase activity in relation to diapause initiation in Bombyx eggs. Insect Biochem 5:707–718.CrossRefGoogle Scholar
  89. Yamashita, O., T. Yaginuma, M. Kobayashi, and T. Furusawa. 1988. Metabolic shift related with embryonic diapause of Bombyx mori: temperature-directed sorbitol metabolism. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza and D. L. Denlinger, pp. 63–275. Wroclaw Technical University Press, Wroclaw.Google Scholar
  90. Yi, S-X., C-M. Yin, and J. H. Nordin. 1987. The in vitro biosynthesis and secretion of glycerol by larval fat bodies of chilled Ostrinia nubilalis. J. Insect Physiol. 33:523–528.CrossRefGoogle Scholar
  91. Zachariassen, K. E. 1985. Physiology of cold tolerance in insects. Physiol. Rev. 65:799–832.Google Scholar
  92. Ziegler, R., M. Ashida, A. M. Fallon, L. T. Wimer, S. Silver Wyatt, and G. R. Wyatt. 1979. Regulation of glycogen Phosphorylase in fat body of Cecropia silkmoth pupae. J. Comp. Physiol. 131:321–332.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Kenneth B. Storey
  • Janet M. Storey

There are no affiliations available

Personalised recommendations