Advertisement

The Water Relations of Overwintering Insects

  • Karl Erik Zachariassen

Abstract

Water is the universal solvent of living organisms. Biochemical and physiological processes require an optimal interaction with water, and organisms possess efficient mechanisms to regulate the amounts and activities of extracellular and intracellular water. Terrestrial animals tend to loose water by evaporation. Insects, which are among the most successful terrestrial animals, have a cuticular exoskeleton with a low water permeability that reduces the evaporative water loss substantially (Edney, 1977).

Keywords

Freezing Tolerance Nucleation Temperature Freezing Rate Fluid Fraction Freezing Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angell, C. A. 1983. Supercooled water. Annu. Rev. Phys. Chem. 34:593–630.CrossRefGoogle Scholar
  2. Baust, J. G. 1973. Mechanisms of cryoprotection in freeze-tolerant animal systems. Cryobiol. 10:197–205.CrossRefGoogle Scholar
  3. Baust, J. G. 1980. Low temperature tolerance in an antarctic insect: a relict adaptation. Cryo-Lett. 1:360–371.Google Scholar
  4. Baust, J. G. and K. E. Zachariassen. 1983. Seasonally active cell matrix associated ice nucleators in an insect. Cryo-Lett. 4:65–71.Google Scholar
  5. Bigg, E. K. 1953. The supercooling of water. Proc. Phys. Soc. Lond. B66:688–694.Google Scholar
  6. Block, W. 1982. Cold hardiness in invertebrate poikilotherms. Comp. Biochem. Physiol. 73A:581–593.CrossRefGoogle Scholar
  7. Block, W. and S. R. Young. 1979. Measurements of supercooling points in small arthropods and water droplets. Cryo-Lett. 1:85–91.Google Scholar
  8. Block, W. and J. Zettel. 1980. Cold-hardiness of some alpine Collembola. Ecol. Entomol. 5:1–9.CrossRefGoogle Scholar
  9. DeVries, A. L. 1982. Biological antifreeze agents in coldwater fishes. Comp. Biochem. Physiol. 73A:627–640.CrossRefGoogle Scholar
  10. Dick, D. A. 1979. Structure and properties of water in the cell. In Mechanisms of Osmoregulation in Animals, ed. R. Gilles, pp. 3–45. John Wiley, New York.Google Scholar
  11. Duman, J. G. 1977. The role of macromolecular antifreezes in the darkling beetle Meracantha contracta. J. Comp. Physiol. 115:279–286.Google Scholar
  12. Edney, E. T. 1977. Water balance in land arthropods. In Zoophysiology and Ecology, Vol. 9. Springer, Berlin.Google Scholar
  13. Evans, L. F. 1967. Ice nucleation under pressure and in salt solution. Trans. Faraday Soc. 63:3060–3071.CrossRefGoogle Scholar
  14. Gherken, U. 1984. Winter survival of an adult bark beetle Ips acuminatus Gyll. J. Insect Physiol. 30:421–429.CrossRefGoogle Scholar
  15. Hansen, T. N. and J. G. Baust. 1988. Serial dilution of Tenebrio molitor haemolymph: Analysis of antifreeze activity by differential scanning calorimetry. Cryo-Lett. 7:386–391.Google Scholar
  16. Horwath, K. L. and J. G. Duman. 1984. Yearly variations in the overwintering mechanisms of the cold-hardy beetle Dendroides canadensis. Physiol. Zool. 57:40–45.Google Scholar
  17. Lee, R. E. Jr. and E. A. Lewis. 1985. Effect of temperature and duration of exposure on tissue ice formation in the gall fly, Eurosta solidaginis (Diptera, Tephritidae). Cryo-Lett. 7:25–34.Google Scholar
  18. Lee, R. E. Jr., K. E. Zachariassen, and J. G. Baust. 1981. Effect of cryoprotectants on the activity of hemolymph nucleating agents in physical solution. Cryobiol. 18:511–514.CrossRefGoogle Scholar
  19. LeFevre, P. G. 1964. The osmotically functional water content of the human erythrocyte. J. Gen. Physiol. 47:585–603.CrossRefGoogle Scholar
  20. Lovelock, J. E. 1953. The mechanism of the cryoprotective effect of glycerol against freezing and thawing. Biochim. Biophys. Acta 11:28–38.CrossRefGoogle Scholar
  21. Lusena, C. V. 1955. Ice propagation in systems of biological interest. III. Effects of solutes on nucleation and growth of ice crystals. Arch. Biochem. Biophys. 57:277–284.CrossRefGoogle Scholar
  22. MacKenzie, A. P. 1977. Non-equilibrium freezing behavior of aqueous systems. Philos. Trans. R. Soc. London [Biol. Sci.] 278:167–189.CrossRefGoogle Scholar
  23. Meryman, H. T. 1971. Osmotic stress as a mechanism of freezing injury. Cryobiol. 8:489–500.CrossRefGoogle Scholar
  24. Miller, L. K. 1978. Freezing tolerance in relation to cooling rate in an adult insect. Cryobiol. 15:345–349.CrossRefGoogle Scholar
  25. Ring, R. 1982. Freezing-tolerant insects with low supercooling points. Comp. Biochem. Physiol. 73A:605–612.CrossRefGoogle Scholar
  26. Salt, R. W. 1953. The influence of food on cold-hardiness of insects. Can. Entomol. 85:261–269.CrossRefGoogle Scholar
  27. Salt, R. W. 1955. Extent of ice formation in frozen tissues and a new method for its measurement. Can. J. Zool. 33:391–403.CrossRefGoogle Scholar
  28. Salt, R. W. 1961. Principles of insect cold hardiness. Annu. Rev. Entomol. 6:55–74.CrossRefGoogle Scholar
  29. Scholander, P. F. 1971. State of water in osmotic processes. Microvasc. Res. 3:215–232.CrossRefGoogle Scholar
  30. Shimada, K. 1989. Ice-nucleating activity in the alimentary canal of the freezing-tolerant prepupae of Trichiocampus populi (Hymenoptera: Tenthredinidae). J. Insect. Physiol. 35:113–120.CrossRefGoogle Scholar
  31. Storey, K. B., J. G. Baust, and P. Buescher. 1981. Determination of water “bound” by soluble subcellular components during low-temperature acclimation in the gall fly larva, Eurosta solidagensis. Cryobiol. 18:315–321.CrossRefGoogle Scholar
  32. Sømme, L. and E.-M. Conradi-Larsen. 1977. Cold-hardiness of collembolans and oribatid mites from windswept mountain ridges. Oikos 29:118–126.CrossRefGoogle Scholar
  33. van der Laak, S. 1982. Physiological adaptation to low temperature in freeze-tolerant Phyllodecta laticollis beetles. Comp. Biochem. Physiol. 73A:613–620.CrossRefGoogle Scholar
  34. Wasylyk, J. M., A. R. Tice, and J. G. Baust. 1988. Partial glass formation: A novel mechanism of insect cryoprotection. Cryobiol. 25:451–458.CrossRefGoogle Scholar
  35. Weast, R. C., ed. 1977. CRC Handbook of Chemistry and Physics, 58th ed. Chemical Rubber Company Press, Cleveland.Google Scholar
  36. Zachariassen, K. E. 1979. The mechanism of the cryoprotective effect of glycerol in beetles tolerant to freezing. J. Insect Physiol. 25:29–32.CrossRefGoogle Scholar
  37. Zachariassen, K. E. 1980. The role of polyols and nucleating agents in cold-hardy beetles. J. Comp. Physiol. 140:227–234.Google Scholar
  38. Zachariassen, K. E. 1985. Physiology of cold tolerance in insects. Physiol. Rev. 65:799–832.Google Scholar
  39. Zachariassen, K. E., J. G. Baust, and R. E. Lee, Jr. 1982. A method for quantitative and qualitative determination of ice nucleating agents in insect hemolymph. Cryobiol. 19:180–184.CrossRefGoogle Scholar
  40. Zachariassen, K. E. and H. T. Hammel. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287.CrossRefGoogle Scholar
  41. Zachariassen, K. E. and H. T. Hammel. 1988. The effect of ice nucleating agents on ice-nucleating activity. Cryobiol. 25:143–147.CrossRefGoogle Scholar
  42. Zachariassen, K. E., H. T. Hammel, and W. Schmidek. 1979. Osmotically inactive water in relation to freezing in Eleodes blanchardi beetles. Comp. Biochem. Physiol. 63A:203–206.CrossRefGoogle Scholar
  43. Zachariassen, K. E. and J. A. Husby. 1982a. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298:865–867.CrossRefGoogle Scholar
  44. Zachariassen, K. E. and J. A. Husby. 1982b. Stabilization of highly supercooled insects by thermal hysteresis antifreeze agents. Cryo-Lett. 3:316.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Karl Erik Zachariassen

There are no affiliations available

Personalised recommendations