Implications of Cold Hardiness for Pest Management

  • J. S. Bale


Agriculture is a world-wide industry with the task of providing sufficient food to feed an ever-expanding global population. Although few countries are self-sufficient in all the agricultural products they require, most of the developed nations cooperate in a system of international trade to ensure a stable food supply for their people. For many developing countries, the export of fruits and vegetables is the mainstay of their economies, whereas, in others, the combined effects of poor quality land, drought, pests, diseases, insecticide resistance, and inadequate crop protection have resulted in years of extreme poverty and famine.


Biological Control Natural Enemy Pest Management Cold Tolerance Birch Forest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AliNiazee, M. T. 1975. Susceptibility of diapausing pupae of the western cherry fruit fly (Diptera: Tephritidae) and a parasite (Hymenoptera: Diapriidae) to subfreezing temperatures. Environ. Entomol. 4:1011–1013.Google Scholar
  2. Bale, J. S. 1980. Seasonal variations in cold hardiness of the adult beech leaf mining weevil Rhynchaenus fagi L. Cryo-Lett. 1:372–383.Google Scholar
  3. Bale, J. S. 1981. Seasonal distribution and migratory behaviour of the beech leaf mining weevil Rhynchaenus fagi L. Ecol. Entomol. 6:109–118.Google Scholar
  4. Bale, J. S. 1987. Review: insect cold hardiness: freezing and supercooling—an ecophysiological perspective. J. Insect Physiol. 33:899–308.CrossRefGoogle Scholar
  5. Bale, J. S., T. N. Hansen, and J. G. Baust. 1989a. Nucleators and sites of nucleation in the freeze tolerant larvae of the gallfly Eurosta solidaginis (Fitch). J. Insect Physiol. 35:291–298.CrossRefGoogle Scholar
  6. Bale, J. S., T. N. Hansen, M. Nishino, and J. G. Baust. 1989b. Effect of cooling rate on the survival of larvae, pupariation and adult emergence of the gallfly Eurosta solidaginis. Cryobiol. 26:285–289.CrossRefGoogle Scholar
  7. Bale, J. S., R. Harrington, and M. S. Clough. 1988. Low temperature mortality of the peach-potato aphid Myzus persicae. Ecol. Entomol. 13:121–129.CrossRefGoogle Scholar
  8. Barnes, D. and A. C. Hodson. 1956. Low temperature tolerance of the European corn borer in relation to winter survival in Minnesota. J. Econ. Entomol. 49:19–24.Google Scholar
  9. Baust, J. G. and R. R. Rojas. 1985. Review—insect cold hardiness: facts and fancy. J. Insect Physiol. 31:755–759.CrossRefGoogle Scholar
  10. Bosch, R. van den and P. S. Messenger. 1973. Biological Control. International Textbook, Aylesbury, England.Google Scholar
  11. Cammell, M. E., M. J. Way, and G. D. Heathcote. 1978. Distribution of eggs of the black bean aphid, Aphis fabae Scop., on the spindle bush, Euonymus europaeus L., with reference to forecasting infestations of the aphid on field beans. Plant Pathol. 27:68–76.CrossRefGoogle Scholar
  12. Cannon, R. J. C. 1987. Effects of low temperature acclimation on the survival and cold tolerance of an Antarctic mite. J. Insect Physiol. 33:509–521.CrossRefGoogle Scholar
  13. Cannon, R. J. C. and W. Block. 1988. Cold tolerance of microarthropods. Biol. Rev. 63:23–77.CrossRefGoogle Scholar
  14. Casagrande, R. A. and D. L. Haynes, 1976. A predictive model for cereal leaf beetle mortality from sub-freezing temperatures. Environ. Entomol. 5:761–769.Google Scholar
  15. Clausen, C. P. 1956. Biological control of insect pests in the continental United States. USDA Tech. Bull. 1139.Google Scholar
  16. DeBach, P. 1964. Biological Control of Insect Pests and Weeds. Chapman and Hall, London.Google Scholar
  17. Dewar, A. M. and N. Carter. 1984. Decision trees to assess the risk of cereal aphid outbreaks. Bull. Entomol. Res. 74:387–398.CrossRefGoogle Scholar
  18. Ditman, L. P., G. B. Vogth, and D. R. Smith. 1943. Undercooling and freezing of insects. J. Econ. Entomol. 36:304–311.Google Scholar
  19. Eger, J. E., J. A. Wiltz, A. W. Hartstack, and W. L. Stirling. 1982. Survival of pupae of Heliothis virescens and Heliothis zea (Lepidoptera: Noctuidae) at low temperatures. Canadian Entomologist 114:289–301.CrossRefGoogle Scholar
  20. Hanec, W. and S. D. Beck. 1960. Cold hardiness in the European corn borer, Pyrausta nubilalis (Hubn.) J. Insect Physiol. 5:169–180.CrossRefGoogle Scholar
  21. Harrington, R. and X.N. Cheng. 1984. Winter mortality, development and reproduction in a field population of Myzus persicae (Sulz.) in England. Bull. Entomol. Res. 74:633–640.CrossRefGoogle Scholar
  22. Holmgren, B. and O. Tenow. 1987. Local extreme minima of winter air temperature in high-latitude mountainous terrain. In Climatological Extremes in the Mountains. Physical Background, Geomorphological and Ecological Consequences, eds. H. Alexandersson and B. Holmgren, Uppsala University, Department of Physical Geography, UNGI Report 65, pp. 25–41.Google Scholar
  23. James, B. D. and M. L. Luff. 1982. Cold-hardiness and development of eggs of Rhopalosiphum insertum. Ecol. Entomol. 7:277–282.CrossRefGoogle Scholar
  24. Knight, J. D. and J. S. Bale. 1986. Cold hardiness and overwintering of the grain aphid Sitobion avenae. Ecol. Entomol. 11:189–197.CrossRefGoogle Scholar
  25. Knight, J. D., J. S. Bale, F. Franks, S. F. Mathias, and J. G. Baust. 1986. Insect cold hardiness: supercooling points and prefreeze mortality. Cryo-Lett. 7:194–203.Google Scholar
  26. Lamb, R. J., W. J. Turnock, and H.N. Hayhoe. 1985. Winter survival and outbreaks of bertha army-worm, Mamestra configurata (Lepidoptera: Noctuidae), on canola. Can. Entomol. 117:727–736.CrossRefGoogle Scholar
  27. Lopez, J. D. and R. K. Morrison, 1980. Susceptibility of immature Trichogramma pretiosum to freezing and subfreezing temperatures. Environmental Entomology 9:697–700.Google Scholar
  28. Madrid F. J. and R. D. Stewart. 1981. Ecological significance of cold hardiness and winter mortality of eggs of the gypsy moth Lymantria dispar L., in Quebec. Environmental Entomology 10:586–589.Google Scholar
  29. O’Doherty, R. and J. S. Bale. 1985. Factors affecting the cold hardiness of the peach potato aphid Myzus persicae. Anna. Appl. Biol. 106:219–228.CrossRefGoogle Scholar
  30. Parish, W. E. G. and J. S. Bale. 1990. Effects of short term exposure to low temperature on wing development in the grain aphid Sitobion avenae. J. Appl. Entomol. 109:175–181.CrossRefGoogle Scholar
  31. Pullin, A. S. and J. S. Bale. 1988. Cause and effects of prefreeze mortality in aphids. Cryo-Lett. 9:101–113.Google Scholar
  32. Pullin, A. S. and J. S. Bale. 1989. Effect of low temperature on diapausing Agiais urticae and Inachis to (Lepidoptera: Nymphalidae): cold hardiness and overwintering survival. J. Insect Physiol. 35:277–281.CrossRefGoogle Scholar
  33. Reigert, P. W. 1967. Association of subzero temperatures, snow cover and winter mortality of grasshopper eggs in Saskatchewan. Can. Entomol. 99:1000–1003.CrossRefGoogle Scholar
  34. Reigert, P. W. 1968. A history of grasshopper abundance surveys and forecasts of outbreaks in Saskatchewan. Mem. Entomol. Soc. Can. 52:5–99.Google Scholar
  35. Rickards, J., M. J. Kelleher, and K. B. Storey. 1987. Strategies of freeze avoidance in larvae of the goldenrod gall moth Epiblemma scudderiana: winter profiles of a natural population. J. Insect Physiol. 33:443–450.CrossRefGoogle Scholar
  36. Salt, R. W. 1936. Studies on the freezing process in insects. Minnesota Agricultural Experimental Station Technical Bulletin 116, pp. 1–41.Google Scholar
  37. Salt, R. W. 1950. Time as a factor in the freezing of undercooled insects. Can. J. Res. 28:285–291.CrossRefGoogle Scholar
  38. Salt, R. W. 1966a. Effect of cooling rate on the freezing temperatures of supercooled insects. Can. J. Zool. 44:655–659.CrossRefGoogle Scholar
  39. Salt, R. W. 1966b. Relation between time of freezing and temperature in supercooled larvae of Cephus cinctus Nort. Can. J. Zool. 44:947–952.CrossRefGoogle Scholar
  40. Schelhaas, D. P. and O. R. Larson. 1989. Cold hardiness and winter survival in the bird flea Ceratophyllus idius. J. Insect Physiol. 35:149–153.CrossRefGoogle Scholar
  41. Stiling, P. D. 1985. An Introduction to Insect Pests and Their Control. MacMillan, London.Google Scholar
  42. Tenow, O. 1972. The outbreaks of Oporinia autumnata Bkh. and Operophthera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968. Zoologiska Bidrag fran Uppsala, Supplement 2.Google Scholar
  43. Tenow, O. 1975. Topographical dependence of an outbreak of Oporinia autumnata Bkh. (Lep., Geometridae) in a mountain birch forest in northern Sweden. Zoon 3:85–110.Google Scholar
  44. Tenow, O. 1983. Topclimatic limitations to the outbreaks of Epirrita (= Oporinia)autumnata (Bkh.) (Lep., Geometridae) near the forest limit of the mountain birch in Fennoscandia. Nordicana 47:159–164.Google Scholar
  45. Tenow, O. and B. Holmgren. 1987. Low winter temperatures and an outbreak of Epirrita autumnata along a valley of Finnmarksvidda, the ‘Cold Pole’ of northern Fennoscandia. In Climatological Extremes in the Mountains. Physical Background, Geomorphological and Ecological Consequences. Uppsala University, Department of Physical Geography, UNGI Report 65, pp. 203–216.Google Scholar
  46. Turl, L. A. D. 1980. An approach to forecasting the incidence of potato and cereal aphids in Scotland. Eur. Plant Protect. Orga. Bull. 10:135–141.Google Scholar
  47. Turl, L. A. D. 1983. The effect of winter weather on the survival of aphid populations on weeds in Scotland. Eur. Plant Protect. Org. Bull. 13:139–143.Google Scholar
  48. Turnock, W. J., R. J. Lamb, and R. P. Bodnaryk. 1983. Effects of cold stress during pupal diapauses on the survival and development of Mamestra configurata (Lepidoptera Noctuidae). O ecología 56: 185–192.Google Scholar
  49. Vall, G. and E. J. Stansbury. 1966. Time-dependent characteristics of the heterogeneous nucleation of ice. Can. J. Phys. 44:477–502.CrossRefGoogle Scholar
  50. Walters, K. F. A. and A. M. Dewar. 1986. Overwintering strategy and the timing of the spring migration of the cereal aphids Sitobion avenae and Sitobionfragariae. J. Appl. Ecol. 23:905–915.CrossRefGoogle Scholar
  51. Way, M.J. and C.J. Banks. 1968. Population studies on the active stages of the black bean aphid, Aphis fabae Scop., on its winter host Euonymus europaeus L. Ann. Appl. Biol. 62:177–197.CrossRefGoogle Scholar
  52. Way, M. J. and M. E. Cammell. 1982. The distribution and abundance of the spindle tree, Euonymus europaeus, in southern England, with particular reference to forecasting infestations of the black bean aphid, Aphis fabae. J. Appl. Ecol. 19:929–940.CrossRefGoogle Scholar
  53. Way, M. J., M. E. Cammell, D. V. Alford, H. J. Gould, C. W. Graham, A. Lane, W. St. G. Light, J. M. Rayner, G. D. Heathcote, K. E. Fletcher, and K. Seal. 1977. Use of forecasting in chemical control of black bean aphid, Aphis fabae Scop, on spring sown field beans, Vicia faba L. Plant Pathol. 26:1–7.CrossRefGoogle Scholar
  54. Way, M. J., M. E. Cammell, L. R. Taylor, and I. P. Woiwod. 1981. The use of egg counts and suction trap samples to forecast the infestation of spring-sown field beans, Vicia faba, by the black bean aphid, Aphis fabae. Ann. Appl. Biol. 98:21–34.CrossRefGoogle Scholar
  55. Way, M. J. and G. D. Heathcote. 1966. Interaction of crop density of field beans, abundance of Aphis fabae Scop., virus incidence and aphid control by chemicals. Ann. Appl. Biol. 57:409–423.CrossRefGoogle Scholar
  56. Wellington, W. G. and R. M. Trimble. 1984. Weather. In Ecological Entomology, eds. C. B. Huffaker and R. L. Rabb, pp. 399–425. John Wiley, New York.Google Scholar
  57. Wetzel, B. W., H. M. Kulman and J. A. Witter. 1973. Effects of cold temperature on hatching of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). Canadian Entomologist 105:1145–1149.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • J. S. Bale

There are no affiliations available

Personalised recommendations