Principles of Insect Low Temperature Tolerance

  • Richard E. LeeJr.


It is well known that temperature has a pervasive effect on insects. Nearly every aspect of an insect’s life is influenced by temperature, from direct effects on the kinetics of enzymatic reactions, to defining the limits of physiological function and behavior, and ultimately to shaping of evolutionary pathways. As a group, insects, more than any other eukaryotic taxon, have evolved not only to survive but to flourish in a wide variety of thermal environments.


Cold Tolerance Freeze Tolerance Cold Hardiness Antifreeze Protein Cold Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angell, C. A. 1982. Supercooled water. In Water: A Comprehensive Treatise, Vol. 7, ed. F. Franks p. 1–81. Plenum Press, New York.Google Scholar
  2. Ashwood-Smith, M.J. and J. Farrant, eds. 1980. Low Temperature Preservation in Medicine andBiology. Pitman Medical, Bath.Google Scholar
  3. Bale, J. S. 1987. Insect cold hardiness-an ecological perspective. J. Insect Physiol. 33:899–908.CrossRefGoogle Scholar
  4. Bale, J. S., R. Harrington, and M. S. Clough. 1988. Low temperature mortality of the peach-potato aphid Myzus persicae. Ecol. Entomol. 13:121–129.CrossRefGoogle Scholar
  5. Bale, J. S., T. N. Hansen, and J. G. Baust. 1989a. Nucleators and sites of nucleation in the freeze tolerant larvae of the gallfly Eurosta solidaginis (Fitch). J. Insect Physiol. 35:291–298.CrossRefGoogle Scholar
  6. Bale, J. S., T. N. Hansen, M. Nishino, and J. G. Baust. 1989b. Effect of cooling rate on the survival of larvae, pupariation, and adult emergence of the gall fly Eurosta solidaginis. Cryobiol. 26:285–289.CrossRefGoogle Scholar
  7. Baust, J. G. 1973. Mechanisms of cryoprotection in freezing tolerant animal systems. Cryobiol. 10:197–205.CrossRefGoogle Scholar
  8. Baust, J. G. and J. S. Edwards. 1979. Mechanisms of freezing tolerance in an Antarctic midge, Belgica antarctica. Physiol. Entomol. 4:1–5.CrossRefGoogle Scholar
  9. Baust, J. G. and R. E. Lee. 1981. Divergent mechanisms of frost-hardiness in two populations of the gall fly, Eurosta solidaginis. J. Insect Physiol. 27:485–490.CrossRefGoogle Scholar
  10. Baust, J. G. and L. K. Miller. 1970. Seasonal variations in glycerol content and its influence on cold-hardiness in the Alaskan carabid beetle, Pterostichus brevicornis. J. Insect Physiol. 16:979–990.CrossRefGoogle Scholar
  11. Baust, J. G. and L. K. Miller. 1972. Influence of low temperature acclimation on cold-hardiness in the beetle, Pterostichus brevicornis. J. Insect Physiol. 18:1935–1947.CrossRefGoogle Scholar
  12. Baust, J. G. and R. R. Rojas. 1985. Review-Insect cold hardiness: facts and fancy. J. Insect. Physiol. 31:755–759.CrossRefGoogle Scholar
  13. Baust, J. G. and K. E. Zachariassen. 1983. Seasonally active cell matrix associated ice nucleators in an insect. Cryo-Lett. 4:65–71.Google Scholar
  14. Baust, J. G., R. Grandee, G. Condon, and R. E. Morrissey. 1979. The diversity of overwintering strategies utilized by separate populations of gall insects. Physiol. Zool. 52:572–580.Google Scholar
  15. Block, W. and J. G. Duman. 1989. Presence of thermal hysteresis producing antifreeze proteins in the Antarctic mite, Alaskozetes antarcticus. J. Exp. Zool. 250:29–231.CrossRefGoogle Scholar
  16. Cannon, R. J. C. and W. Block. 1988. Cold tolerance of microarthropods. Biol. Rev. 63:23–77.CrossRefGoogle Scholar
  17. Carpenter, J. F. and J. H. Crowe. 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiol. 25:244–255.CrossRefGoogle Scholar
  18. Carpenter, J. F., B. Martin, L. M. Crowe and J. H. Crowe. 1987. Stabilization of phosphofructokinase during air-drying with sugars and sugar/transition metal mixtures. Cryobiol. 24:455–464.CrossRefGoogle Scholar
  19. Chen, C. P., D. L. Denlinger, and R. E. Lee, 1987a. Cold-shock injury and rapid cold hardening in the flesh fly, Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.Google Scholar
  20. Chen, C. P., D. L. Denlinger, and R. E. Lee. 1987b. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: Developmental rate, cold tolerance and glycerol concentrations. Ann. Entomol Soc. Am. 80:790–796.Google Scholar
  21. Clegg, J. S. 1981. Metabolic consequences of the extent and disposition of the aqueous intracellular environment. J. Exp. Zool. 215:303–313.CrossRefGoogle Scholar
  22. Crowe, J. H. and J. S. Clegg, eds. 1973. Anhydrobiosis. Dowden, Hutchinson and Ross, Stoudsburg, Pennsylvania.Google Scholar
  23. Crowe, J. H., L. M. Crowe, and R. Mouradian. 1983. Stabilization of biological membranes at low water activities. Cryobiol. 20:346–356.CrossRefGoogle Scholar
  24. Crowe, L. M., R. Mouradian, J. H. Crowe, S. A. Jackson, and C. Womersley. 1984. Effects of carbohydrates on membrane stability at low water activities. Biochim. Biophys. Acta 769:141–150.CrossRefGoogle Scholar
  25. Crowe, J. H., L. M. Crowe, J. F. Carpenter, and C. A. Wistrom. 1987. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242:1–10.Google Scholar
  26. Czajka, M. C. and R. E. Lee, 1990. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J. Exp. Biol. 148:245–254.Google Scholar
  27. Danks, H. V. 1971. Overwintering of some north temperate and arctic Chironomidae I. the winter environment. Can. Entomol. 103:589–604.CrossRefGoogle Scholar
  28. Danks, H. V. 1987. Insect Dormancy: An Ecological Perspective. Biological Survey of Canada, Ottawa, Ontario.Google Scholar
  29. Dubach, P., Smith, F., D. Pratt, and C. M. Stewart. 1959. Possible role of glycerol in the winter-hardiness of insects. Nature 184:288–289.CrossRefGoogle Scholar
  30. Duman, J. G. 1980. Factors involved in the overwintering survival of the freeze tolerant beetle Dendroides canadensis. J. Comp. Physiol. 136:53–59.Google Scholar
  31. Duman, J. G. and K. L. Horwath. 1983. The role of hemolymph proteins in the cold tolerance of insects. Annu. Rev. Physiol. 45:261–270.CrossRefGoogle Scholar
  32. Duman, J. G., L. G. Neven, J. M. Beals, K. R. Olson, and F. J. Castellino. 1985. Freeze-tolerance adaptations, including haemolymph protein and lipoprotein nucleators, in the larvae of the cranefly Tipula trivittata. J. Insect Physiol. 31:1–8.CrossRefGoogle Scholar
  33. Enomoto, O. 1981. Larval diapause in Chymomyza costata (Diptera: Drosophilidae) II. Frost avoidance. Low Temp. Sc. 39:31–39.Google Scholar
  34. Fahy, G. M., D. R. MacFarlane, C. A. Angell, and H. T. Meryman. 1984. Vitrification as an approach to cryopreservation. Cryobiol. 21:407–426.CrossRefGoogle Scholar
  35. Fields, P. G. and J. N. McNeil. 1988. The cold-hardiness of Ctenucha virginica (Lepidoptera: Arctiidae) larvae, a freezing-tolerant species. J. Insect. Physiol. 34:269–277.CrossRefGoogle Scholar
  36. Franks, F. 1985. Biophysics and Biochemistry at Low Temperatures. Cambridge University Press, Cambridge.Google Scholar
  37. Franks, F. 1987. Nucleation: a maligned and misunderstood concept. Cryo-Lett. 8:53–55.Google Scholar
  38. Gehrken, U. 1984. Winter survival of an adult bark beetle, Ips acuminatus Gyll. J. Insect Physiol. 30:421–429.CrossRefGoogle Scholar
  39. Gehrken, U. 1985. Physiology of diapause of an adult bark beetle, Ips acuminatus Gyll., studied in relation to cold hardiness. J. Insect Physiol. 31:909–916.CrossRefGoogle Scholar
  40. Hamilton, R. L., D. E. Mullins, and D. M. Orcutt. 1985. Freezing-tolerance in the woodroach Cryptocercus punctulatus (Scudder). Experientia 41:1535–1537.CrossRefGoogle Scholar
  41. Hamilton, M. D., R. R. Rojas, and J. G. Baust. 1986. Juvenile hormone: modulation of cryoprotectant synthesis in Eurosta solidaginis by a component of the endocrine system. J. Insect Physiol. 32:971–979.CrossRefGoogle Scholar
  42. Hanec, W. and S. D. Beck. 1960. Cold hardiness in the European corn borer, Pyrausta nubilalis (Hubn.). J. Insect Physiol. 5:169–180.CrossRefGoogle Scholar
  43. Heinrich, B. and T. P. Mommsen. 1985. Flight of winter moths near 0°C. Science 228:177–179.CrossRefGoogle Scholar
  44. Hinton, H. E. 1960. A fly larva that tolerates dehydration and temperatures of -270° to +102°C. Nature 188:336–337.CrossRefGoogle Scholar
  45. Hoffmann, K. H. 1985. Metabolic and enzyme adaptation to temperature. In Environmental Physiology and Biochemistry of Insects, ed. K. H. Hoffmann, pp. 1–32. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  46. Horwath, K. L. and J. G. Duman, 1983. Induction of antifreeze protein production by juvenile hormone in larvae of the beetle, Dendroides canadensis. J. Comp. Physiol. 151:233–240.Google Scholar
  47. Horwath, K. L. and J. G. Duman. 1984. Further studies on the involvement of the circadian system in photoperiodic control of antifreeze protein production in the beetle Dendroides canadensis. J. Insect. Physiol. 30:947–955.CrossRefGoogle Scholar
  48. Humble, L. M. and R. A. Ring. 1985. Inoculative freezing of a larval parasitoid within its host. Cryo-Lett. 6:59–66.Google Scholar
  49. Johnston, S. L. and R. E. Lee. 1990. Regulation of supercooling and nucleation in a freeze intolerant beetle (Tenebrio molitor). Cryobiol. 27: 562–568.CrossRefGoogle Scholar
  50. Kirchner, W. 1973. Ecological aspects of cold resistance in spiders. In Effects of Temperature on Ectothermic Organisms, ed. W. Weiser, pp. 271–279. Springer-Verlag, New York.CrossRefGoogle Scholar
  51. Knight, C.A. 1967. The Freezing of Supercooled Fluids. Van Nostrand, Princeton.Google Scholar
  52. Knight, C. A. and J. G. Duman. 1986. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiol. 23:256–262.CrossRefGoogle Scholar
  53. Knight, J. D., J. S. Bale, F. Franks, S. F. Mathias, and J. G. Baust. 1986. Insect cold hardiness: supercooling points and pre-freeze mortality. Cryo-Lett. 7:194–203.Google Scholar
  54. Kohshima, S. 1984. A novel cold-tolerant insect found in a Himalayan glacier. Nature 310:225–227.CrossRefGoogle Scholar
  55. Kukal, O., A. S. Serianni, and J. G. Duman. 1988. Glycerol metabolism in a freeze-tolerant arctic insect: an in vivo 13 C NMR study. J. Comp. Physiol. 158:175–183.Google Scholar
  56. Kukal, O., J. G. Duman, and A. S. Serianni. 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. J. Comp. Physiol. 158:661–671.Google Scholar
  57. Layne, J. R., R. E. Lee, and J. L. Huang. 1990. Inoculation triggers freezing at high subzero temperatures in a freeze-tolerant frog (Rana sylvatica) and insect (Eurosta solidaginis). Can. J. Zool. 68:506–510.CrossRefGoogle Scholar
  58. Lee, R. E. 1980. Physiological adaptations of Coccinellidae to supranivean and subnivean hibernacula. J. Insect Physiol. 26:135–138.CrossRefGoogle Scholar
  59. Lee, R. E. 1989. Insect cold-hardiness: to freeze or not to freeze. BioScience 39:308–313.CrossRefGoogle Scholar
  60. Lee, R. E. and J. G. Baust. 1981. Seasonal patterns of cold-hardiness in Antarctic terrestrial arthropods. Comp. Biochem. Physiol. 70:579–582.CrossRefGoogle Scholar
  61. Lee, R. E. and J. G. Baust. 1987. Cold-hardiness in the Antarctic tick, Ixodes uriae. Physiol. Zool. 60:499–506.Google Scholar
  62. Lee, R. E., C. P. Chen, M. H. Meacham, and D. L. Denlinger. 1987a. Ontogenetic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J. Insect Physiol. 33:587–592.CrossRefGoogle Scholar
  63. Lee, R. E., C. P. Chen, and D. L. Denlinger. 1987b. A rapid cold-hardening process in insects. Science 238:1415–1417.CrossRefGoogle Scholar
  64. Lee, R. E. and D. L. Denlinger. 1985. Cold tolerance in diapausing and nondiapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiol. Ent. 10: 309–315.CrossRefGoogle Scholar
  65. Lee, R. E., D. L. Denlinger, and C. P. Chen. 1988. Insect cold-hardiness and diapause: Regulatory relationships. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, D. L. Denlinger, and A. Zabza, pp. 243–262. Wroclaw Technical University Press, Wroclaw, Poland.Google Scholar
  66. Lee, R. E., and E. A. Lewis. 1985. Effect of temperature and duration of exposure on tissue ice formation in the gall fly, Eurosta solidaginis (Diptera, Tephritidae). Cryo-Lett. 6:25–34.Google Scholar
  67. Lee, R. E., J. M. Strong-Gunderson, M. R. Lee, K. S. Grove, and T. J. Riga. 1990. Isolation of ice nucleating active bacteria from insects. J. Expt. Zool. (in press).Google Scholar
  68. Lee, R. E., K. E. Zachariassen, and J. G. Baust. 1981. Effect of cryoprotectants on the activity of hemolymph nucleating agents in physical solutions. Cryobiol. 18:511–514.CrossRefGoogle Scholar
  69. Levitt, J. 1980. Responses of Plants to Environmental Stresses, Vol. 1, Chilling, Freezing and High Temperature Stresses. 2nd ed. Academic Press, New York.Google Scholar
  70. Lindow, S. E. 1987. Competitive exclusion of epiphytic bacteria by ice-Pseudomonas syringae mutants. Appl. Environ. Microbiol. 53:2520–2527.Google Scholar
  71. Lovelock, J. E. 1953. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim. Biophys. Acta 11:28–36.CrossRefGoogle Scholar
  72. Luyet, B.J. 1966. Anatomy of the freezing process in physical systems. In Cryobiology, ed. H. T. Meryman, pp. 115–138. Academic Press, London.Google Scholar
  73. Mazur, P. 1984. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247 (Cell Physiol. 16):C125-C142.Google Scholar
  74. McGrath, J. J. 1984. Effect of thermoelastic stress on thermal shock and the freezing response of cell-size, unilamellar liposomes. Cryobiol. 21:696–697.CrossRefGoogle Scholar
  75. McGrath, J. J. 1987. Cold shock: thermoelastic stress in chilled biological membranes. In Network Thermodynamics, Heat and Mass Transfer in Biotechnology, ed. K. R. Diller, ASME Bed Vol. 5, HTD Vol. 90, pp. 57–66.Google Scholar
  76. McGrath, J. J. and K. R. Diller, eds. 1988. Low Temperature Biotechnology. ASME Bed Vol. 10, HTD Vol. 98.Google Scholar
  77. Meryman, H. T., ed. 1966. Cryobiology. Academic Press, London.Google Scholar
  78. Meryman, H. T. 1974. Freezing injury and its prevention in living cells. Annu. Rev. Biophys. Bioeng. 3:341–363.CrossRefGoogle Scholar
  79. Miller, L. K. 1969. Freezing tolerance in an adult insect. Science 166:105–106.CrossRefGoogle Scholar
  80. Miller, L. K. 1978. Freezing tolerance in relation to cooling rate in an adult insect. Cryobiol. 15:345–349.CrossRefGoogle Scholar
  81. Miller, L. K. 1982. Cold-hardiness strategies of some adult and immature insects overwintering in interior Alaska. Comp. Biochem. Physiol. 73:595–604.CrossRefGoogle Scholar
  82. Morris, G. S. 1987. Direct chilling injury. In The Effects of Low Temperatures on Biological Systems, eds. B. W. W. Grout and G. J. Morris, pp. 120–146. Edward Arnold, London.Google Scholar
  83. Morrissey, R. and J. G. Baust. 1976. The ontogeny of cold tolerance in the gall fly, Eurosta solidaginis. J. Insect Physiol. 22:431–438.CrossRefGoogle Scholar
  84. Morrissey, R. and J. S. Edwards. 1979. Neural function in an alpine grylloblattid: a comparison with the house cricket, Acheta domesticus. Physiol. Entomol. 4:241–250.CrossRefGoogle Scholar
  85. Nordin, J. H., Z. Cui, and C.-M. Yin. 1984. Cold-induced glycerol accumulation by Ostrinia nubilalis larvae is developmentally regulated. J. Insect Physiol. 30:563–566.CrossRefGoogle Scholar
  86. Pegg, D. E. 1988. The nature of cryobiological problems In Low Temperature Biotechnology, eds. J. J. McGrath and K. R. Diller, ASME Bed Vol. 10, HTD Vol. 98 pp. 3–21.Google Scholar
  87. Pegg, D. E. and A. M. Karow. 1987. The Biophysics of Organ Cryopreservation. Plenum, New York.Google Scholar
  88. Quinn, P. J. 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiol. 22:128–146.CrossRefGoogle Scholar
  89. Rickards, J., M. J. Kelleher, and K. B. Storey. 1987. Strategies of freeze avoidance in larvae of the goldenrod gall moth. Epiblema scudderiana: winter profiles of a natural population. J. Insect Physiol. 33:443–450.CrossRefGoogle Scholar
  90. Ring, R. A. 1981. The physiology and biochemistry of cold tolerance in arctic insects. J. Thermal Biol. 6:219–229.CrossRefGoogle Scholar
  91. Ring, R. A. 1982. Freezing-tolerant insects with low supercooling points. Comp. Biochem. Physiol. 73:605–612.CrossRefGoogle Scholar
  92. Ring, R. A. and D. Tesar. 1981. Adaptations to cold in Canadian Arctic insects. Cryobiol. 18:199–211.CrossRefGoogle Scholar
  93. Rojas, R. R., R. E. Lee, and J. G. Baust, 1986. Relationship of environmental water content to glycerol accumulation in the freezing tolerant larvae of Eurosta solidaginis (Fitch). Cryo-Lett. 7:234–245.Google Scholar
  94. Rubinsky, B. and D. E. Pegg. 1988. A mathematical model for the freezing process in biological tissue. Proc. R. Soc. Lond. [Biol] 234:343–358.CrossRefGoogle Scholar
  95. Salt, R. W. 1936. Studies on the freezing process in insects. Technical Bulletin 116. University of Minnesota Agricultural Experimental Station.Google Scholar
  96. Salt, R. W. 1953. The influence of food on cold hardiness of insects. Can. Entomol. 85:261–269.CrossRefGoogle Scholar
  97. Salt, R. W. 1957. Natural occurrence of glycerol in insects and its relation to their ability to survive freezing. Can. Entomol. 89:491–494.CrossRefGoogle Scholar
  98. Salt, R. W. 1959. Survival of frozen fat body cells in an insect. Nature Lond. 184:1426.CrossRefGoogle Scholar
  99. Salt, R. W. 1961. Principles of insect cold hardiness. Annu. Rev. Entomol. 6:55–74.CrossRefGoogle Scholar
  100. Salt, R. W. 1962. Intracellular freezing in insects. Nature 193:1207–1208.CrossRefGoogle Scholar
  101. Salt, R. W. 1963. Delayed inoculative freezing of insects. Can. Entomol. 95:1190–1202.CrossRefGoogle Scholar
  102. Salt, R. W. 1966a. Factors influencing nucleation in supercooled insects. Can. J. Zool. 44:117–133.CrossRefGoogle Scholar
  103. Salt, R. W. 1966b. Effect of cooling rate on the freezing temperature of supercooled insects. Can. J. Zool. 44:655–659.CrossRefGoogle Scholar
  104. Salt, R. W. 1969. The survival of insects at low temperatures. In Dormancy and Survival, Symposium of the Society of Experimental Biology, Vol. 23, pp. 331–350.Google Scholar
  105. Schnell, R. C. 1976. Bacteria acting as natural ice nucleants at temperatures approaching — 1°C. Bull. Am. Meteorol. Soc. 57:1356–1357.Google Scholar
  106. Shimada, K. 1980. Some physiological properties associated with freeze-tolerance in diapausing pupae of Papilio machaon. Low Temp. Sci 38:53–60.Google Scholar
  107. Shimada, K. 1989. Ice-nucleating activity in the alimentary canal of the freezing-tolerant prepupae of Trichiocampus populi (Hymenoptera: Tenthredinidae). J. Insect Physiol. 35:113–120.CrossRefGoogle Scholar
  108. Shimada, K. and A. Riihimaa. 1988. Cold acclimation, inoculative freezing and slow cooling: essential factors contributing to the freeze-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae). Cryo-Lett. 9:5–10.Google Scholar
  109. Sømme, L. 1964. Effects of glycerol on cold-hardiness in insects. Can. J. Zool. 42:87–101.CrossRefGoogle Scholar
  110. Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. 73:519–543.CrossRefGoogle Scholar
  111. Sømme, L. and W. Block. 1982. Cold-hardiness of Collembola at Signy Island, maritime Antarctic. Oikos 38:168–176.CrossRefGoogle Scholar
  112. Southwick, E. E. and G. Heldmaier. 1987. Temperature control in honeybee colonies. Bio Science 37:395–398.Google Scholar
  113. Steponkus, P. L., D. V. Lynch, M. Uemura, R. A. Balsamo, and T. Arvinte. 1988. Plant cryobiology: Cellular and molecular aspects of freezing injury and cold acclimation. In Low Temperature Biotechnology, eds. J. J. McGrath, and K. R. Diller, ASME Bed Vol. 10, HTD Vol. 98, pp. 47–56.Google Scholar
  114. Storey, K. B. and J. M. Storey. 1981. Biochemical strategies of overwintering in the gall fly larva, Eurosta solidaginis: effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. J. Comp. Physiol. 144:191–199.Google Scholar
  115. Storey, K. B. and J. M. Storey, 1988. Freeze tolerance in animals. Physiol. Rev. 68:27–84.Google Scholar
  116. Storey, K. B., J. G. Baust, and P. Buescher. 1981. Determination of water “bound” by soluble subcellular components during low-temperature acclimation in the gall fly larva, Eurosta solidaginis. Cryobiol. 18:315–321.CrossRefGoogle Scholar
  117. Strong-Gunderson, J. M., R. E. Lee, and M. R. Lee. 1989. Ice nucleating bacteria promote transcuticular nucleation in insects. Cryobiol. 26:551.CrossRefGoogle Scholar
  118. Strong-Gunderson, J. M., R. E. Lee, M. R. Lee, K. S. Grove, and T. J. Riga. 1990. Ingestion of ice nucleating active bacteria increases the supercooling point of the lady beetle Hippodamia convergens. J. Insect Physiol. 36:153–157.CrossRefGoogle Scholar
  119. Taylor, M. J. 1987. Physio-chemical principles in low temperature biology. In The Effects of Low Temperatures on Biological Systems, eds. B. W. W. Grout and G. J. Morris. Edward Arnold, London, pp. 3–71.Google Scholar
  120. Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal Adaptations of Insects. Oxford University Press, New York.Google Scholar
  121. Tsumuki, H. and K. Kanehisa. 1979. Glycerol concentrations in haemolymph of hibernating larvae of the rice stem borer, Chilo suppressalis Walker: Effects of ligation and cold tolerance. Appl. Entomol. Zool. 14:497–499.Google Scholar
  122. Tsumuki, H. and K. Kanehisa. 1981. Effect of JH and ecdysone on glycerol and carbohydrate contents in diapausing larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Appl. Ent. Zool. 16:7–15.Google Scholar
  123. Turnock, W. J., R. J. Lamb, and R. P. Bodnaryk. 1983. Effects of cold stress during pupal diapause on the survival of Mamestra configurata (Lepidoptera: Noctuidae). Oecologia 56:185–192.CrossRefGoogle Scholar
  124. Vali, G., R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, 1976. Biogenic ice nuclei. Part II. Bacterial sources. J. Atmos Sci. 33:1565–1570.CrossRefGoogle Scholar
  125. Warren, G. J. 1987. Bacterial ice nucleation: Molecular biology and applications Biotech. Gen. Eng. Rev. 5:107–135.Google Scholar
  126. Wasylyk, J. M., A. Tice, and J. G. Baust. 1988. Partial glass formation: a novel mechanism of insect cryoprotection. Cryobiol. 25:451–458.CrossRefGoogle Scholar
  127. Wood, F. E. and J. H. Nordin. 1976. Studies on the low temperature induced biogenesis of glycerol by adult Protophormia terranovae. J. Insect Physiol. 22:1665–1674.CrossRefGoogle Scholar
  128. Young, S. R. and W. Block. 1980. Experimental studies on the cold tolerance of Alaskozetes antarcticus. J. Insect Physiol. 26:189–200.CrossRefGoogle Scholar
  129. Zachariassen, K. E. 1973. Seasonal variation in hemolymph osmolality and osmotic contribution of glycerol in adult Rhagium inquisitor L. (Col., Cerambycidae). Norsk. Entomol. Tidsskr. 20:259–262.Google Scholar
  130. Zachariassen, K. E. 1985. Physiology of cold tolerance in insects. Physiol. Rev. 65:799–832.Google Scholar
  131. Zachariassen, K. E. and H. T. Hammel. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287.CrossRefGoogle Scholar
  132. Zachariassen, K. E., H. T. Hammel, and W. Schmidek. 1979. Studies on freezing injuries in Eleodes blanchardi beetles. Comp. Biochem. Physiol. 63:199–202.CrossRefGoogle Scholar
  133. Zachariassen, K. E. and J. A. Husby. 1982. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298:865–867.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Richard E. LeeJr.

There are no affiliations available

Personalised recommendations