Overwintering in Honey Bees: Implications for Apiculture

  • Edward E. Southwick


Because terrestrial ectotherms cannot tolerate intracellular ice, most treatments in the literature that deal with their overwinter survival in habitats where they encounter subzero winter temperatures describe physiological and biochemical adaptations for cold hardiness (Duman, 1982; Storey, 1987;Zachariassen, 1985). These include freeze tolerance and freeze avoidance, usually by mechanisms employing cryoprotectants (glycoprotein or polyols in the hemolymph), supercooling by removal of ice-nucleating agents, or dehydration (Storey, 1987; Sømme, 1982). All insects occupying regions where winters are long and often severe, overwinter in a diapause phase of development such as a pupa, egg, or resistant larva, as an inactive adult with antifreeze protection, as a resistant egg stage tolerant of desiccation and low temperature, or as freeze-tolerant individuals with cryoprotective agents. A few insect species are successful at migrating long distances to avoid the cold and lack of food.


Flight Muscle Indirect Flight Muscle Thoracic Muscle Brood Rear Brood Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. 1931. How long does a bee live? Bee World 12:25.Google Scholar
  2. Beenakkeres, A. M. T., D. J. Van Der Horst, and W. J. A. Van Marrewuk. 1984. Insect flight muscle metabolism. Insect Biochem. 14:243–260.CrossRefGoogle Scholar
  3. Betts, A. D. 1943. Temperature and food consumption of wintering bees. Bee World 24:60–62.Google Scholar
  4. Blum, M. S. 1985. Fundamentals of Insect Physiology. John Wiley, New York.Google Scholar
  5. Chippendale, G. M. 1978. The functions of carbohydrates in insect life processes. In (ed.), M. Rockstein Biochemistry of Insects, pp. 1–55. Academic Press, New York.Google Scholar
  6. Corkins, C. L. and C. S. Gilbert. 1932. The metabolism of honeybees in winter cluster. Univ. Wyoming Agr. Exp. Sta. Bull. 187:1–30.Google Scholar
  7. Crabtree, B. and E. A. Newsholme. 1975. In Insect Muscle, ed. P. N. R. Usherwood, pp. 405–500. Academic Press, New York.Google Scholar
  8. Duman, J. G. 1982. Insect antifreezes and ice-nucleating agents. Cryobiol. 19:613–627.CrossRefGoogle Scholar
  9. Dustmann, J. H. and W. Ohe. 1988. Einfluss von Kaelteeinbruechen auf die Fruehjahrsentwicklung von Bienenvoelkern (Apis mellifera L.). Apidologie 19:245–254.CrossRefGoogle Scholar
  10. Esch, H. 1964. Ueber den Zusammenhang zwischen Temperatur, Aktionspotentialen und Thoraxbewegungen bei der Honigbiene (Apis mellifica L.). Zeit. Vergl. Physiol. 48:547–551.Google Scholar
  11. Esch, H. and J. Bastian. 1968. Mechanical and electrical activity in the indirect flight muscles of the honey bee. Zeit, vergl. Physiol. 58:429–440.CrossRefGoogle Scholar
  12. Free, J. B. and P. A. Racey. 1968. The effect of the size of honeybee colonies on food consumption, brood rearing and the logevity of the bees during winter. Entomol. Exp. Appl. 11:241–249.CrossRefGoogle Scholar
  13. Furgala, B. 1975. Fall management and the wintering of productive colonies. In: The Hive and the Honey Bee, pp. 471–490.Google Scholar
  14. Dadant and Sons, Hamilton, II.. Gilbert, C. H. 1932. Studies of temperature in the bee hive with special reference to radiation of heat from the cluster. Rep. Iowa St. Apiarist, 31–37.Google Scholar
  15. Harbo, J. R. 1986. Effect of population size on brood production, worker survival and honey gain in colonies of honeybees. J. Apic. Res. 25:22–29.Google Scholar
  16. Heinrich, B. 1979. Thermoregulation of African and European honeybees during foraging, attack, and hive exits and returns. J. Exp. Biol. 80:217–229.Google Scholar
  17. Jongbloed, J. and C. A. G. Wiersma. 1934. Der Stoffwechsel der Honigbiene wahrend des Fliegens. Z. vergl. Physiol. B21:519–533.CrossRefGoogle Scholar
  18. Koeniger, N. 1978. Das Waermen der Brut bei der Honigbiene (Apis mellifera L.). Apidologie 9:305–320.CrossRefGoogle Scholar
  19. May, M. L. 1985. Thermoregulation. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, (eds.) G. A. Kerkut and L. I. Gilbert, pp. 507–552.Google Scholar
  20. Moebus, B. 1978. Um die Wintertraube bei den Bienen. Bienenwelt 20:170–182.Google Scholar
  21. Newsholme, E. A., B. Crabtree, S. J. Higgins, S. D. Thorton, and C. Start. 1972. The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem. J. 128:89–97.Google Scholar
  22. Owens, C. D. 1971. The thermology of wintering honey bees. USDA Tech. Bull. 1429:1–42.Google Scholar
  23. Phillips, E. F. and G. S. Demuth, 1914. The temperature of the honeybee in winter. USDA Bull. 93:1–16.Google Scholar
  24. Plowright, R. C. and T. M. Laverty. 1984. The ecology and sociobiology of bumble bees. Annu. Rev.Entomol. 29:175–199.CrossRefGoogle Scholar
  25. Ritter, W. 1982. Experimenteller Beitrag zur Thermoregulation des Bienenvolkes (Apis mellifera L.). Apidologie 13:169–185.CrossRefGoogle Scholar
  26. Ruttner, F. 1987. Biogeography and Taxonomy of Honeybees. Springer-Verlag, Berlin.Google Scholar
  27. Sakagami, S. F. and H. Fukuda. 1968. Life tables for worker honeybees. Res. Popul. Ecol. 10:127–139.CrossRefGoogle Scholar
  28. Seeley, T. D. 1985. Honeybee Ecology: A Study of Adaptation in Social Life. Princeton University Press, Princeton, NJ.Google Scholar
  29. Seeley, T. D. and R. A. Morse. 1978. Nest site selection by the honeybee. Insectes Sociaux 25:323–337.CrossRefGoogle Scholar
  30. Seeley, T. D. and P. K. Visscher. 1985. Survival of honeybees in cold climates: the critical timing of colony growth and reproduction. Ecol Entomol. 10:81–88.CrossRefGoogle Scholar
  31. Shehata, S. M., G. F. Townsend, and R. W. Shuel. 1981. Seasonal physiological changes in queen and worker honeybees. J Apic. Res. 20:69–78.Google Scholar
  32. Smugor, D. 1989. Biochemical mechanisms of aging in honey bees. Brockport Scholars, April 5, 1989, State University of New York, Brockport, NY. USA Abstr. 57.Google Scholar
  33. Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. 73A:519–543.CrossRefGoogle Scholar
  34. Southwick, E. E. 1991. Physiology and social physiology of the honey bee. In The Hive and the Honey Bee, Dadant and Sons, Hamilton, II. (in press)Google Scholar
  35. Southwick, E. E. 1988. Thermoregulation in honey-bee colonies, pp. 223–236. In Africanized Honey Bees and Bee Mites, M. Delfinado-Baker, G. Needham, R. Page and C. Bowman, Ellis Horwood Ltd., Chichester.Google Scholar
  36. Southwick, E. E. 1987. Cooperative metabolism in honey bees: an alternative to antifreeze and hibernation. J. Thermal Biol. 12:155–158.CrossRefGoogle Scholar
  37. Southwick, E. E. 1985a. Thermal conductivity of wax comb and its effect on heat balance in colonial honey bees (Apis mellifera L). Experientia 41:1486–1487.CrossRefGoogle Scholar
  38. Southwick, E. E. 1985b. Bee hair structure and effect of hair on metabolism at cool temperature. J. Apic. Res. 24:144–149.Google Scholar
  39. Southwick, E. E. 1985c. Allometric relations, metabolism and heat conductance in clusters of honey bees at cool temperatures. J. Comp. Physiol. 156:143–149.Google Scholar
  40. Southwick, E. E. 1983. The honey bee cluster as a homeothermic superorganism. Comp. Biochem. Physiol. 75:641–645.CrossRefGoogle Scholar
  41. Southwick, E. E. 1982. Metabolic energy of intact honey bee colonies. Comp. Biochem. Physiol. 71:277–281.CrossRefGoogle Scholar
  42. Southwick, E. E. and G. Heldmaier. 1987. Temperature control in honey bee colonies. Bioscience 37:395–399.CrossRefGoogle Scholar
  43. Southwick, E. E. and J. N. Mugaas. 1971. A hypothetical homeotherm: the honeybee hive. Comp. Biochem. Physiol. 40:935–944.CrossRefGoogle Scholar
  44. Southwick, E. E., D. Roubik, and J. Williams. 1990. Comparative colony energy balance of Africanized and European honeybees. Comp. Biochem. Physiol, (in press)Google Scholar
  45. Storey, K. B. 1987. Biochemische Mechanismen der Anpassung. Werk. Dtsch. Zool. Ges. 80:77–91.Google Scholar
  46. Storey, K. B. 1985. Metabolic biochemistry of insect flight. In Circulation, Respiration and Metabolism, pp. 193–207 (ed.) R. Gilles, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  47. Szabo, T. I. 1987. Outdoor wintering of honeybees in multiple-nucleus and 4-colony packs of honeybees. J. Apic. Res. 26:238–239.Google Scholar
  48. Szabo, T. I. 1980. Effect of weather factors on honeybee flight activity and colony weight gain. J. Apic. Res. 19:164–171.Google Scholar
  49. Wigglesworth, V. B. 1984. Insect Physiology. University Press, Cambridge.Google Scholar
  50. Wigglesworth, V. B. 1983. The physiology of insect tracheoles. In Advances in Insect Physiology, eds. M. J. Berridge, J. E. Treherne, and V. B. Wigglesworth, Academic Press, New York.Google Scholar
  51. Zachariassen, K. E. 1985. Physiology of cold tolerance in insects. Physiol. Rev. 65:799–832.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Edward E. Southwick

There are no affiliations available

Personalised recommendations