Advertisement

Silkworm Eggs at Low Temperatures: Implications for Sericulture

  • Okitsugu Yamashita
  • Toshinobu Yaginuma

Abstract

Sericulture and apiculture are unique among the field of general entomology, because they contribute to the development of technical bases for the use of insects as a bioresource for human life. Sericulture usually includes all phases of raw silk production and has a long history of developing industrial techniques. Rapid development has been achieved by the improvement of silkworm strains using hybrid breeding and the expansion of the rearing season by controlling embryogenesis (Yokoyama, 1973). Artificial hatching of eggs was less important when larvae were reared only in the spring, for under natural conditions larval hatching takes place in the spring in conceit with the growth of mulberry leaves. In nature, diapause eggs laid in spring never hatch before a long period of cold exposure during hibernation. Thus, no larvae appear in summer or autumn even when mulberry leaves are available. To elicit egg hatch for summer- and autumn-rearing, intense efforts have been made in studies of diapause, cold storage, and artificial hatching of silkworm eggs. This research has not only clarified the physiological mechanisms of diapause, but it has also provided appropriate techniques for obtaining hatchable eggs at any time of the year.

Keywords

Mulberry Leave Larval Hatching Subesophageal Ganglion Yolk Cell Sorbitol Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, K. 1962. Protective action of the polyols against freezing injury in the silkworm egg. Sci. Rep. Tohoku Univ. Ser. IV [Biol.]. 28:29–36.Google Scholar
  2. Azuma, M. and O. Yamashita. 1985. Immunohistochemical and biochemical localization of trehalase in the developing ovaries of the silkworm, Bombyx mori. Insect Biochem. 15:589–596.Google Scholar
  3. Chen, J. H., T. Yaginuma, and O. Yamashita. 1988. Effect of diapause hormone on cyclic nucleotide metabolism in developing ovaries of the silkworm, Bombyx mori. Comp. Biochem. Physiol. 91:631–637.Google Scholar
  4. Chino, H. 1957. Carbohydrate metabolism in diapause eggs of the silkworm Bombyx mori. I. Diapause and the change of glycogen content. Embryologica 3:295–316.CrossRefGoogle Scholar
  5. Chino, H. 1958. Carbohydrate metabolism in the diapause egg of the silkworm Bombyx mori. II. Conversion of glycogen into sorbitol and glycerol during diapause. J. Insect Physiol. 2:1–12.CrossRefGoogle Scholar
  6. Coulon, M. 1988. Comparative changes of ecdysteroid content in Bombyx mori eggs in diapausing and non-diapausing development. Comp. Biochem. Physiol. 89:503–509.CrossRefGoogle Scholar
  7. Furusawa, T., K. Shimizu, and T. Yano. 1987. Polyol accumulation in the non-diapause eggs of the silkworm, Bombyx mori. J. Serie. Sci. Jap. 56:150–156.Google Scholar
  8. Hasegawa, K. 1957. The diapause hormone of the silkworm, Bombyx mori. Nature 179:1300–1301.CrossRefGoogle Scholar
  9. Hayakawa, Y. and H. Chino. 1982. Temperature-dependent activation or inactivation of glycogen Phosphorylase and synthase of fat body of the silkworm Philosamia cynthia: the possible mechanism of the temperature-dependent interconversion between glycogen and trehalose. Insect Biochem. 12:361–366.CrossRefGoogle Scholar
  10. Hochachka, P. W. and G. N. Somero. 1984. Biochemical Adaptation. Princeton University Press, Princeton, N.J.Google Scholar
  11. Indrasith, L. S., T. Sasaki, and O. Yamashita. 1988a. A unique protease responsible for selective degradation of a yolk protein in Bombyx mori purification, characterization, and cleavage profile. J. Biol. Chem. 263:1045–1051.Google Scholar
  12. Indrasith, L. S., M. Izuhara, M. Kobayashi, and O. Yamashita. 1988b. In vitro translation of the protease catalyzing Bombyx mori egg-specific protein and identification of a nascent peptide with biological activity. Arch. Biochem. Biophy. 267:328–333.CrossRefGoogle Scholar
  13. Isobe, M. and T. Goto. 1980. Diapause hormones. In Neurohormonal Techniques in Insects, ed. T. A. Miller, pp. 217–243. Springer-Verlag, Berlin.Google Scholar
  14. Kai, H. 1977. The existence of diapause hormone in adult ovaries and mature eggs of the silkworm, Bombyx mori L. J. Serie. Sci. Jap. 46:239–245.Google Scholar
  15. Kai, H. and T. Kawai. 1981. Diapause hormone in Bombyx eggs and adult ovaries. J. Insect Physiol. 27:623–627.CrossRefGoogle Scholar
  16. Kai, H., T. Kawai, and Y. Kawai. 1987. A time-interval activation of esterase A4 by cold. Relation to the termination of embryonic diapause in the silkworm Bombyx mori. Insect Biochem. 17:367–372.Google Scholar
  17. Kawamura, N. 1978. The early embryonic mitosis in normal and cooled eggs of the silkworm, Bombyx mori. J. Morphol. 158:57–72.Google Scholar
  18. Kitazawa, T., T. Kanda, and T. Takami. 1963. Changes of mitotic activity in the silkworm egg in relation to diapause. Bull. Sericul. Exp. Sta. 18:283–295.Google Scholar
  19. Koga, N. and M. Osanai. 1967. Der Gehalt an Tryptophan, Kynurenin, 3-Hydroxy-kynurenin und Ommochromen bei den uberwinternden Eiern des Seidenspinners Bombyx mori wahrend der Entwicklung. Hoppe-Seylef s Z. Physiol. Chem. 348:979–982.CrossRefGoogle Scholar
  20. Kogure, M. 1933. The influence of light and temperature on certain characters of the silkworm, Bombyx mori. J. Dept. Agr. Kyushu Imp. 4:1–93.Google Scholar
  21. Kusuda, J., T. Noguchi, K. Onimaru, and O. Yamashita. 1985. Maturation and hatching of eggs from silkworm ovaries preserved in liquid nitrogen. J. Insect Physiol. 31:963–967.CrossRefGoogle Scholar
  22. Miya, K. 1984. Early embryogenesis of Bombyx mori. In Insect Ultrastructure, Vol. 2, eds. R. C. King and H. Akai, pp. 49–73. Plenum Press, New York.CrossRefGoogle Scholar
  23. Miya, K., M. Kurihara, and I. Tanimura. 1972. Changes of fine structures of the serosa cell and the yolk cell during diapause and post-diapause development in the silkworm, Bombyx mori L. J. Fac. Agr. Iwate Univ. 11:51–87.Google Scholar
  24. Miyadai, T. and O. Yamashita. 1980. Diapause hormone action in the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae): Enhancement of trehalase activity in developing ovaries incubated in vitro. Appl. Ent. Zool. 15:439–446.Google Scholar
  25. Morohoshi, S. 1979. Developmental Physiology of the Silkworm. Gakkai Shupan Center, Tokyo.Google Scholar
  26. Nakano, Y. 1933. Exposure of Bombyx diapause eggs to low temperatures during winter season. Gunma Bull. Sericul. Exp. Sta. 16:1–37.Google Scholar
  27. Ohtsuki, Y. 1979. Silkworm eggs. In A General Textbook of Sericulture, ed. Japanese Society of Sericultural Science, pp. 156–173. Nihon Sansi Shinbun-sha, Tokyo.Google Scholar
  28. Ohtsuki, Y. 1986. Reproduction and embryogenesis. In An Experimental Manual of the Silkworm, ed T. Mori, pp. 104–120. Tsukuba Publishing, Tokyo.Google Scholar
  29. Ohtsuki, Y. and A. Murakami. 1968. Nuclear division in the early embryonic development of the silkworm, Bombyx mori L. Zool. Mag. 77:383–387.Google Scholar
  30. Ohtsuki, Y., S. Mori, T. Kanda, and T. Kitazawa. 1976. Morphological observation on the embryonic moult in the silkworm, Bombyx mori. J. Serie. Sci. Jap. 45:225–231.Google Scholar
  31. Okada, M. 1970. Electron microscope studies on diapause embryos of the silkworm, Bombyx mori L. Sci. Rep. Tokyo Kyoiku Daigaku Sect. B 14:95–111.Google Scholar
  32. Osanai, M. and Y. Yonezawa. 1986. Changes in amino acid pools in the silkworm, Bombyx mori during embryonic life. Alanine accumulation and its conversion to proline during diapause. Insect Biochem. 16:373–379.CrossRefGoogle Scholar
  33. Shinbo, H. 1989. Survival of larval ovaries and testes frozen in liquid nitrogen in the silkworm, Bombyx mori. Cryobiol. 26: 389–396.Google Scholar
  34. Sonobe, H. and H. Odake. 1986. Studies on embryonic diapause in the pnd mutant of the silkworm, Bombyx mori. V. Identification of a pnd + gene-specific protein. Roux’s Arch. Dev. Biol. 195:229–235.CrossRefGoogle Scholar
  35. Sonobe, H. and Y. Okada. 1984. Studies on the embryonic diapause in the pnd mutant of the silkworm, Bombyx mori. III. Accumulation of alanine in the diapause eggs. Roux’s Arch. Dev. Biol. 193:414–417.Google Scholar
  36. Sonobe, H., A. Matsumoto, Y. Fukuzaki, and S. Fujiwara. 1979. Carbohydrate metabolism and restricted oxygen supply in the eggs of the silkworm, Bombyx mori. J. Insect Physiol. 25:381–388.Google Scholar
  37. Sonobe, H., K. Maotani, and H. Nakajima. 1986. Studies on embryonic diapause in the pnd mutant of the silkworm, Bombyx mori: genetic control of embryogenesis. J. Insect Physiol. 32:215–220.CrossRefGoogle Scholar
  38. Storey, K. B. and J. M. Storey. 1981. Biochemical strategies of overwintering in the gall fly larva, Eurosta solidaginis: effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. J. Comp. Physiol. 144:191–199.Google Scholar
  39. Sugai, E., T. Yokoyama, and T. Mino. 1987. Death of haploid androgenetic eggs in the silkworm, Bombyx mori. J. Serie. Sci. Jap. 56:385–389.Google Scholar
  40. Suzuki, K., M. Fujita, and K. Miya. 1983. Changes in supercooling point of silkworm eggs. J. Serie. Sci. Jap. 52:185–190.Google Scholar
  41. Suzuki, K., M. Hosaka, and K. Miya. 1984. The amino acid pool of Bombyx mori eggs during diapause. Insect Biochem. 14:557–561.CrossRefGoogle Scholar
  42. Takami, T. 1969. A General Textbook of the Silkworm Eggs. Zenkoku Sanshu Kyokai, Tokyo.Google Scholar
  43. Takami, T. 1972. In vitro development of insect embryos. In Invertebrate Tissue Culture, Vol. 2, ed. C. Vago, pp. 137–159. Academic Press, New York.Google Scholar
  44. Takami, T., K. Totani, H. Sugiyama, T. Kitazawa, and T. Kanda. 1966. Embryonic growth of the silkworm, Bombyx mori L., at the early post-diapause stage, with special reference to the connection between the growth and nuclear division. Bull. Sericul. Exp. Sta. 20:57–69.Google Scholar
  45. Takeda, S. 1977a. Stage dependency of diapause egg production by corpora cardiaca and corpora allata complex of the silkworm, Bombyx mori (Lepidoptera:Bombycidae). Appl. Entomol. Zool. 12:80–82.Google Scholar
  46. Takeda, S. 1977b. Induction of egg diapause in Bombyx mori by some cephalo-thoracic organs of the cockroach, Periplaneta americana. J. Insect Physiol. 23:813–816.CrossRefGoogle Scholar
  47. Takeda, S., Y. Kono, and Y. Kameda. 1988. Induction of nondiapause eggs in Bombyx mori by a trehalase inhibitor. Entomol. Exp. Appl. 46:291–294.CrossRefGoogle Scholar
  48. Takesue, S., H. Keino, and K. Onitake. 1980. Blastoderm formation in the silkworm egg (Bombyx mori L.). J. Embryol. Exp. Morphol. 60:117–124.Google Scholar
  49. Tamazawa, S. 1977. On the influences upon supercooling treatments to the silkworm eggs, Bombyx mori L. I. The resistibility of eggs of the early developmental stages to the low temperature. Res. Bull. Univ. Farm. Hokkaido Univ. 20:138–144.Google Scholar
  50. Watanabe, K. 1924. Studies on the voltinism in the silkworm. Bull. Seric. Exp. Sta. 6:411–455.Google Scholar
  51. Yaginuma, T. and O. Yamashita. 1978. Polyol metabolism related to diapause in Bombyx eggs: Different behaviour of sorbitol from glycerol during diapause and post-diapause. J. Insect Physiol. 24:347–354.CrossRefGoogle Scholar
  52. Yaginuma, T. and O. Yamashita. 1979. NAD-dependent sorbitol dehydrogenase activity relation to the termination of diapause in eggs of Bombyx mori. Insect Biochem. 9:547–553.Google Scholar
  53. Yaginuma, T., M. Kobayashi, and O. Yamashita. 1990a. Distinct effects of different low temperatures on the induction of NAD-sorbitol dehydrogenase activity in diapause eggs of the silkworm, Bombyx mori. J. Comp. Physiol. B. (in press).Google Scholar
  54. Yaginuma, T., M. Kobayashi, and O. Yamashita. 1990b. Effects of low temperatures on NAD-sorbitol dehydrogenase activity and morphogenesis in non-diapause eggs of the silkworm. Bombyx mori. Comp. Biochem. Phsyiol. B. (in press).Google Scholar
  55. Yamaguchi, S. 1943. On the cold hardiness of the silkworm eggs during the incubation. J. Serie. Sci. 14:144–147.Google Scholar
  56. Yamashita, O. and K. Hasegawa. 1985. Embryonic diapause. In Comparative Insect Physiology, Biochemistry and Pharmacology, Vol. 1, eds. G. A. Kerkut and L. I. Gilbert, pp. 407–434. Pergamon, Oxford.Google Scholar
  57. Yamashita, O. and K. Irie. 1980. Larval hatching from vitellogenin-deficient eggs developed in male hosts of the silkworm. Nature 283:385–386.CrossRefGoogle Scholar
  58. Yamashita, O., T. Yaginuma, and K. Hasegawa. 1981. Hormonal and metabolic control of egg diapause of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Entomol. Gen. 7:195–211.Google Scholar
  59. Yamashita, O., T. Yaginuma, M. Kobayashi, and T. Furusawa. 1988. Metabolic shift related with embryonic diapause of Bombyx mori: Temperature-directed sorbitol metabolism. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 263–275. Wroclaw Technical University Press, Wroclaw.Google Scholar
  60. Yokoyama, T. 1963. Sericulture. Annu. Rev. Entomol. 8:287–306.CrossRefGoogle Scholar
  61. Yokoyama, T. 1973. The history of sericultural science in relation to industry. In History of Entomology, eds. R. F. Smith, T. E. Mittler, and C. N. Smith, pp. 267–284. Annual Reviews, Palo Alto, CA.Google Scholar
  62. Yokomaya, T. and E. Sugai. 1987. Effect of hot-water treatment on early development of eggs of the silkworm, Bombyx mori. J. Serie. Sci. Jap. 56:441–442.Google Scholar
  63. Zhu, J., L. S. Indrasith, and O. Yamashita. 1986. Characterization of vitellin, egg-specific protein and 30 kDa protein from Bombyx eggs, and their fates during oogenesis and embryogenesis. Biochim. Biophy. Acta 882:427–436.CrossRefGoogle Scholar
  64. Ziegler, R., M. Ashida, A. M. Fallon, L. T. Wimer, S. S. Wyatt, and G. R. Wyatt. 1979. Regulation of glycogen Phosphorylase in fat body of Cecropia silkmoth pupae. J. Comp. Physiol. 131:321–332.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Okitsugu Yamashita
  • Toshinobu Yaginuma

There are no affiliations available

Personalised recommendations