Advertisement

Cryobiology of Drosophila Melanogaster Embryos

  • Peter L. Steponkus
  • Stanley P. Myers
  • Daniel V. Lynch
  • Ronald E. Pitt
  • Ta-Te Lin
  • Ross J. MacIntyre
  • Stanley P. Leibo
  • William F. Rall

Abstract

The common fruit fly Drosophila melanogaster is the subject of investigation in many diverse areas of biology. It has been studied intensively by geneticists, developmental and molecular biologists, neurobiologists, population and evolutionary biologists, entomologists, and chronobiologists. Currently, interest in D. melanogaster is most intense among molecular biologists, but studies of D. melanogaster have a long and distinguished history, dating back to Thomas Hunt Morgan in the first decade of this century. As a result of both past and present activity, there is an enormous number of D. melanogaster genetic stocks. In 1985 it was estimated that the number of different stocks was in excess of 30,000 and was rapidly increasing because of the increased number of investigators studying Drosophila, the increased number of large scale mutant screens, and the generation of new stocks by DNA transformation. Since then, the number of mutant stocks is even greater, especially since so many germ line transformants have been obtained; for example, in Drosophila Information Service (June 1988), some 1350 entries were recorded in the “clone list.” Many of these clones have been reinserted in several different places in the germ line via P-element mediated transformation. We estimate that over 50,000 different genetic lines of D. melanogaster are now maintained in national and international stock centers and in the laboratories of individual investigators.

Keywords

Cold Shock Osmotic Dehydration Chilling Injury Drosophila Melanogaster Embryo Subzero Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arking, R. and A. Parente. 1980. Effects of RNA inhibitors on the development of Drosophila embryos permeabilized by a new technique. J. Exp. Zool. 212:183–184.CrossRefGoogle Scholar
  2. Cowley, C. W., W. J. Timson, and J. A. Sawdye. 1961. Ultra rapid cooling techniques in the freezing of biological materials. Biodynamica 8:317–329.Google Scholar
  3. Dowgert, M. F. and P. L. Steponkus. 1983. Effect of cold acclimation on intracellular ice formation in isolated protoplasts. Plant Physiol. 72:978–988.CrossRefGoogle Scholar
  4. Franks, F. and M. Bray. 1980. Mechanism of ice nucleation in undercooled plant cells. Cryo-Lett. 1:221–226.Google Scholar
  5. Franks, F., S. F. Mathias, P. Galfre, S. D. Webster, and D. Brown. 1983. Ice nucleation and freezing in undercooled cells. Cryobiol. 20:298–309.CrossRefGoogle Scholar
  6. Hatton, B. and P. L. Steponkus. 1987. Computerized cryomicroscopic video image analysis. Cryobiol. 24:555.CrossRefGoogle Scholar
  7. Leibo, S. P., S. P. Myers, and P. L. Steponkus. 1988. Survival of Drosophila melanogaster embryos cooled to subzero temperatures. Cryobiol. 25:545–546.CrossRefGoogle Scholar
  8. Limbourg, B. and M. Zalokar. (1973. Permeabilization of Drosophila eggs. Dev. Biol. 35:382–387.CrossRefGoogle Scholar
  9. Lin, T. T. 1989. Determination and modelling of osmometric behavior of Drosophila melanogaster embryos. Ph.D. Thesis. Cornell University, Ithaca, NY.Google Scholar
  10. Lin, T. T., S. P. Myers, R. E. Pitt, and P. L. Steponkus. 1987. Volumetric behavior and hydraulic conductivity of Drosophila embryos. Cryobiol. 24:542–543.CrossRefGoogle Scholar
  11. Lin, T. T., R. E. Pitt, and P. L. Steponkus. 1988. Permeability of Drosophila melanogaster embryos to ethylene glycol and glycerol. Cryobiol. 25:527–528.CrossRefGoogle Scholar
  12. Lin, T. T., R. E. Pitt, and P. L. Steponkus. 1989a. Osmometric behavior of Drosophila melanogaster embryos. Cryobiol. 26:453–471.CrossRefGoogle Scholar
  13. Lin, T. T., R. E. Pitt, and P. L. Steponkus. 1990b. Permeability of Drosophila melanogaster embryos to ethylene glycol and glycerol. Cryobiology (in press).Google Scholar
  14. Luyet, B. 1961. A method for increasing the cooling rate in refrigeration by immersion in liquid nitrogen or in other boiling baths. Biodynamica 8:331–329.Google Scholar
  15. Lynch, D. V., S. P. Myers, S. P. Leibo, R. J. Maclntyre, andP. L. Steponkus. 1988. Permeabilization of Drosophila eggs using isopropanol and hexane. DIS 67:89–90.Google Scholar
  16. Lynch, D. V., T. T. Lin, S. P. Myers, S. P. Leibo, R. J. Maclntyre, R. E. Pitt, and P. L. Steponkus. 1989. A two-step method for permeabilization of Drosophila eggs. Cryobiol. 26:445–452.CrossRefGoogle Scholar
  17. MacFarlane, D. R. 1986. Devitrification in glass-forming aqueous solutions. Cryobiol. 23:230–244.CrossRefGoogle Scholar
  18. MacFarlane, D. R. 1987. Physical aspects of vitrification in aqueous solutions. Cryobiol. 24:181–195.CrossRefGoogle Scholar
  19. Margaritis, L. H., F. C. Kaftos, and W. H. Petri. 1980. The eggshell of Drosophila melanogaster I. Fine structure of the layers and regions of the wild-type eggshell. J. Cell Sci. 43:1–35.Google Scholar
  20. Mathias, S. F., F. Franks, and K. Trafford. 1984. Nucleation and growth of ice in deeply undercooled erythrocytes. Cryobiol. 21:123–130.CrossRefGoogle Scholar
  21. Mathias, S. F., F. Franks, and R. H. M. Hatley. 1985. Preservation of viable cells in the undercooled state. Cryobiol. 22:537–546.CrossRefGoogle Scholar
  22. Mazur, P. 1977. The role of intracellular freezing in the death of cells. Cryobiol. 14:251–272.CrossRefGoogle Scholar
  23. Mazur, P., U. Schneider, K. B. Jacobson, and A. P. Mahowald. 1988. Chilling injury in intact Drosophila eggs at various stages of embryonic development between 0 and -25°C in the absence of ice formation. Cryobiol. 25:544.CrossRefGoogle Scholar
  24. Mitchison, T. J. and J. Sedat. 1983. Localization of antigenic determinants in whole Drosophila embryos. Dev. Biol. 99:261–264.CrossRefGoogle Scholar
  25. Morris, G.J. 1987. Direct chilling injury. In The Effects of Low Temperatures on Biological Systems, eds. B. W. W. Grout and G. J. Morris, pp. 120–146. Edward Arnold, London.Google Scholar
  26. Myers, S. P., D. V. Lynch, S. P. Myers, R. E. Pitt, and P. L. Steponkus. 1987. Cryobiology of Drosophila embryos. Cryobiol. 24:549.CrossRefGoogle Scholar
  27. Myers, S. P., D. V. Lynch, D. C. Knipple, S. P. Leibo, and P. L. Steponkus. 1988a. Low temperature sensitivity of Drosophila melanogaster embryos. Cryobiol. 25:544–545.CrossRefGoogle Scholar
  28. Myers, S. P., T. T. Lin, R. E. Pitt, and P. L. Steponkus. 1988b. Tolerance of Drosophila melanogaster embryos to ethylene glycol. Cryobiol. 25:545.CrossRefGoogle Scholar
  29. Myers, S. P., R. E. Pitt, D. V. Lynch, and P. L. Steponkus. 1989a. Characterization of intracellular ice formation in Drosophila melanogaster embryos. Cryobiol. 26:472–484.CrossRefGoogle Scholar
  30. Myers, S. P., T. T. Lin, R. E. Pitt, and P. L. Steponkus. 1989b. Tolerance of Drosophila melanogaster embryos to permeating cryoprotectants. Cryobiol. 26:550.CrossRefGoogle Scholar
  31. Pitt, R. E. and P. L. Steponkus. 1989. Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts. Cryobiol. 26:44–63.CrossRefGoogle Scholar
  32. Pitt, R. E., T. T. Lin, S. P. Myers, and P. L. Steponkus. 1989. Intracellular ice formation in Drosophila melanogaster embryos: implications for conventional cryopreservation. Cryobiol. 26:550.CrossRefGoogle Scholar
  33. Rall, W. F. and G. M. Fahy. 1985. Ice-free cryopreservation of mouse embryos at -196°C by vitrification. Nature 313:573–575.CrossRefGoogle Scholar
  34. Rasmussen, D. H., M. N. MacCauley, and A. P. MacKenzie. 1975. Supercooling and nucleation of ice in single cells. Cryobiol. 12:328–339.CrossRefGoogle Scholar
  35. Steponkus, P. L. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35:543–584.CrossRefGoogle Scholar
  36. Steponkus, P. L., M. F. Dowgert, J. R. Ferguson, and R.L. Levin. 1984. Cryomicroscopy of isolated plant protoplasts. Cryobiol. 21:209–233.CrossRefGoogle Scholar
  37. Steponkus, P. L., S. P. Myers, D. V. Lynch, L. Gardner, V. Bronshteyn, S. P. Leibo, W. F. Rall, R. E. Pitt, T.-T. Lin and R. J. Maclntyre. 1990. Cryopreservation of Drosophila melanogaster embryos. Nature 345:170–172.CrossRefGoogle Scholar
  38. Widmer, B. and W. J. Gehring. 1973. A method for permeabilization of Drosophila eggs. DIS 51:149.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Peter L. Steponkus
  • Stanley P. Myers
  • Daniel V. Lynch
  • Ronald E. Pitt
  • Ta-Te Lin
  • Ross J. MacIntyre
  • Stanley P. Leibo
  • William F. Rall

There are no affiliations available

Personalised recommendations