Cryopreservation of Insect Germplasm: Cells, Tissues and Organisms

  • Roger A. Leopold


The concept of cyropreserving insect germplasm is not a new idea; entomologists and others using insects and/or cells in research, in education, or for commerce often successfully employ cold temperature to lengthen the shelf-life of their material. Why should we be concerned with furthering the science of insect cryopreservation? The answer is basically simple. There is a significant and widespread need to extend the applicability of long-term cold storage to a wider range of insect species, life stages, cells, and tissues. Practical applications for cryopreservation are abundant among the many disciplines utilizing insects or their cells. In most cases when whole insects are currently subjected to cold temperature for the purpose of storage, no special cryopreservative treatments are applied and often only those cold-tolerant species that possess an overwintering life stage are used. Furthermore, cryopreservation of insect cell and tissue cultures has evolved, with little modification, from the methods used to store vertebrate cells at low temperature. To date, the primary concern has been on gaining survival after freezing and little regard has been given to optimizing other parameters that may affect poststorage yield, viability, and differentiation of the insect cells and tissues.


Insect Cell Cold Tolerance Artificial Insemination Frost Resistance Cold Hardiness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allis, C. D., E. M. Underwood, J. H. Caulton, and A. P. Mahowald. 1979. Pole cells of Drosophila melanogaster in culture. Dev. Biol. 69:451–465.Google Scholar
  2. Anderson, D. T. 1966. The comparative embryology of the Diptera. Annu. Rev. Entomol. 1:23–45.Google Scholar
  3. Anderson, D. T. 1972. The development of hemi- and holometabolous insects. In Developmental Systems: Insects, eds. S. J. Counce and C. H. Waddington, pp. 96–241. Academic Press, New York.Google Scholar
  4. Anchordoguy, T. J., A. S. Rudolph, J. F. Carpenter, and J. H. Crowe. 1987. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 24:324–331.Google Scholar
  5. Asahina, E. 1955. Freezing and supercooling as a method of storage of a mobile animal, a preliminary experiment. Zool. Mag. 64:280–285.Google Scholar
  6. Asahina, E. 1959. Prefreezing as a method enabling animals to survive freezing at a super-low temperature. Nature, 184:1003–1004.Google Scholar
  7. Asahina, E. 1966. Freezing and frost resistance in insects. In Cryobiology. ed. H. T. Meryman, pp. 451–485. Academic Press, London.Google Scholar
  8. Asahina, E. 1969. Frost resistance in insects. In Advances in Insect Physiology, eds. J. E. Treherne and V. B. Wigglesworth, pp. 1–49. Academic Press, New York.Google Scholar
  9. Asahina, E. and K. Tanno. 1964. A large amount of trehalose in a frost-resistant insect. Nature, 204:1222.Google Scholar
  10. Asahina, E. and K. Tanno. 1966. Freezing resistance in the diapausing pupa of the cecropia silkworm at liquid nitrogen temperature. Low Temp. Sci. 24:25–34.Google Scholar
  11. Baust, J. G. 1973. Mechanisms of cryoprotection in freezing tolerant animal systems. Cryobiol. 10:197–205.Google Scholar
  12. Baust, J. G. 1982. Environmental triggers to cold-hardening. Comp. Biochem. Physiol. 73:563–570.Google Scholar
  13. Baust, J. G., R. E. Lee, and R. A. Ring. 1982. The physiology and biochemistry of low temperature tolerance in insects and other terrestrial arthropods. Cryo-Lett. 3:191–212.Google Scholar
  14. Baust, J. G. and R. E. Morrissey. 1975. Supercooling phenomenon and water content independence in the overwintering beetle, Coleomegilla maculata. J. Insect Physiol. 21:1751–1754.Google Scholar
  15. Blum, M. S., S. Glowska, and S. Taber. 1962. Chemistry of the drone honey bee reproductive system. II. Carbohydrates in the reproductive organs and semen. Ann. Entmol. Soc. Am. 55:135–139.Google Scholar
  16. Boller, E. F. 1979. Behavioral aspects of quality in insectary production. In Genetics in Relation to Insect Management, eds. M. A. Hoy and J. J. McKelvey, pp. 145–152. Rockefeller Foundation, New York.Google Scholar
  17. Bourne, W. M. 1986. Clinical and experimental aspects of corneal cryopreservation. Cryobiol. 23:566.Google Scholar
  18. Brown, B. L., S. C. Nagle, J. D. Lehman, and C.D. Rapp. 1971. Storage of Aedes aegypti and Aedes albopictus cells under liquid nitrogen. Cryobiol. 7:249–251.Google Scholar
  19. Bruschweiler, W. and W. Gehring. 1973. A method for freezing living ovaries of Drosophila melanogaster larvae and its application to the storage of mutant stocks. Experientia 29:14–135.Google Scholar
  20. Burcham, E. 1957. Artificial insemination of Aedes aegypti (L.) Can. Entomol. 89:494–495.Google Scholar
  21. Bush, G. L., R. W. Neck, and G. B. Kitto. 1976. Screwworm irradiation: inadvertent selection for non competitive ecotypes during mass rearing. Science 193:491–493.Google Scholar
  22. Callaini, G. and D. Marchini. 1989. Abnormal centrosomes in cold-treated Drosophila embryos. Exp. Cell Res. 184:367–374.Google Scholar
  23. Cannon, R. J. 1986. Diet and acclimation effects on the cold tolerance and survival of an Antartic springtail (Crytotopygus antarticus). Br. Antarct. Surv. Bull. 71: 19–30.Google Scholar
  24. Cannon, R. J., W. Block, and G. D. Collett. 1985. Loss of supercooling ability in Cryptopygus antarcticus (Collembola: Isotomidae) associated with water uptake. Cryo-Lett. 6:73–80.Google Scholar
  25. Chen, C.-P., D. L. Denlinger, and R. E. Lee. 1987. Cold-shock injury and rapid cold-hardening in the flesh fly, Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.Google Scholar
  26. Clarke, C. A., F. M. Clarke, W. Cross, A. C. Gill, and H. L. Tasker. 1988. In vitro fertilization of insects: a review of the literature and a report on some current work in butterflies and moths. Amateur Entomol. Soc. Bull. 47:227–237.Google Scholar
  27. Colhoun, E. H. 1960. Acclimation to cold in insects. Entomol. Exp. Appl. 3:27–37.Google Scholar
  28. Craig, G. B. Jr. 1964. Applications of genetic technology to mosquito rearing. Bull. WHO 31:469–473.Google Scholar
  29. Crystal, M. M. 1967. Reproductive behavior of laboratory-reared screwworm flies. J. Med. Entomol. 4:443–450Google Scholar
  30. Czajka, M. C. and R. E. Lee. 1988. Cold shock and rapid cold hardening in Drosophila melanogaster. Cryobiol. 25:546.Google Scholar
  31. Davis, N. T. 1965. Studies of the reproductive physiology of Cimicidae (Hemiptera). II. Artificial insemination and the function of the seminal fluid. J. Insect Physiol. 11:355–366.Google Scholar
  32. Drooz, A. T. 1981. Subfreezing eggs of Lanbinapellucidaria (Lepidoptera: Geometidae) alters status as factitious host for Ooencyrtus ennomophagus (Hymenoptera: Encyrtidae). Can J. Entomol. 113:775–776.Google Scholar
  33. Drooz, A. T. and J. D. Solomon. 1980. Rearing the egg parasite Ooencyrtus ennomophagus (Hymenoptera: Encyrtidae) on eggs of Clostera inclusa (Lepidoptera: Notodontidae) kept below freezing. Can. Entomol. 112:739–740.Google Scholar
  34. Drooz, A. T. and M. L. Weems. 1982. Cooling eggs of Eutrapela clemataria (Lepidoptera: Geome-tridae) to minus 10 Celius forestalls decline in parasite production with Ooencyrtus ennomophagus (Hymenoptera: Encyrtidae). Can. Entomol. 114:1195–1196.Google Scholar
  35. Fahy, G. M., D. R. MacFarlane, C. A. Angeli, and H. T. Meryman. 1984. Vitrification as an approach to cryopreservation. Cryobiol. 21:407–426.Google Scholar
  36. Farrant, J. 1980. General observations on cell preservation. In Low Temperature Preservation in Medicine and Biology, eds. M. J. Ashwood-Smith and J. Farrant, pp. 1–18. Pitman, London.Google Scholar
  37. Farrant, J., S. C. Knight, and G. J. Morris. 1972. Use of different cooling rates during cooling to separate populations of human peripheral blood lymphocytes. Cryobiol. 9:516–525.Google Scholar
  38. Farrant, J., C. A. Walter, H. Lee, and L. E. McGann. 1977. The use of two-step cooling procedures to examine factors influencing cell survival following freezing and thawing. Cryobiol. 14:273 – 286.Google Scholar
  39. Florkin, M. and C. Jeuniaux. 1974. Hemolymph: composition. In The Physiology of lnsecta, Vol. 5, ed. M. Rockstein, pp. 256–307. Academic Press, New York.Google Scholar
  40. Franks, F. 1985. Biophysics and Biochemistry at Low Temperatures. Cambridge University Press, Cambridge.Google Scholar
  41. Gennadiev, V. G. and E. D. Khlistovskii. 1980. Long-term cold storage of host eggs for reproduction of egg parasites of pest insects. Zh. Obshch. Biol. 41:314–319.Google Scholar
  42. Goll, P. H., J. Duncan, and N. Brown. 1989. Long-term storage of eggs of Simulium ornatum. Med. Vet. Entomol. 3:67–75.Google Scholar
  43. Goodwin, R. H. 1985. Growth of insect cells in serum-free media. In Techniques in the Life Sciences, Cell Biology, Techniques in Setting Up and Maintenance of Tissue and Cell Cultures, Vol. Cl, pp. 1–28.Google Scholar
  44. Elsevier. Harbo, J. R. 1977. Survival of honey bee spermatozoa in liquid nitrogen. Ann. Entomol. Soc. Am. 70:257–258.Google Scholar
  45. Harbo, J. R. 1979. Storage of honey bee spermatozoa at -196°C. J. Apic. Res. 18:57–63.Google Scholar
  46. Harbo, J. R. 1983. Survival of honey bee (Hymenoptera: Apidae) spermatozoa after two years storage in liquid nitrogen (196°C). Ann. Entomol. Soc. Am. 76:890–891.Google Scholar
  47. Heacox, A. E. and R. A. Leopold. 1984. Optimizing conditions for cryopreservation of an insect cell line. Cryobiol. 21:435–442.Google Scholar
  48. Heacox, A. E., R. A. Leopold, and J. D. Brammer. 1985. Survival of house fly embryos cooled in the presence of dimethylsulfoxide. Cryo-Lett. 6:305–312.Google Scholar
  49. Hill, D. L. 1945. Chemical removal of the chorion from Drosophila eggs. DIS. 19:62.Google Scholar
  50. Hinton, H. E. 1960. A fly larva that tolerates dehydration and temperature of -270 to +102°C. Nature 188:336–337.Google Scholar
  51. Honadel, T. E. and G. J. Killian. 1988. Cryopreservation of murine embryos with trehalose and glycerol. Cryobiol. 25:331–337.Google Scholar
  52. Horwath, K. L. and J. G. Duman. 1983. Induction of antifreeze protein production by juvenile hormone in larvae of the beetle Dendroides canadensis. J. Comp. Physiol. 151:233–240.Google Scholar
  53. Ivashchenko, L. A. 1977. The effect of oxygen and light on embryonic development and times of emergence of the larvae of blackflies (Diptera: Simuliidae). Med. Parazitol. Parasit. Bolezni. 46:37–41.Google Scholar
  54. James, E. R., A. Hodgson-Smith, B. Smith, M. Jackson-Gegan, D. McLean, J. T. Rawls, J. Renfro, A. R. Dobinson, I. Popiel, D. L. Minter, and P. J. Ham. 1989. The essential role of vitrification in cryopreservation of parasitic helminths. Cryobiol. 26:575.Google Scholar
  55. Jutte, N. H., P. Heyse, H. G. Jansen, G. J. Bruining, and G. H. Zeilmaker. 1987. Vitrification of human islet of Langerhans. Cryobiol. 24:403–411.Google Scholar
  56. Kaftanoglu, O. and Y.-S. Peng. 1984. Preservation of honeybee spermatozoa in liquid nitrogen. J. Apic. Res. 23:157–163.Google Scholar
  57. Kruuv, J., D. J. Glofcheski, and J. R. Lepock. 1988. Protective effect of L-glutamine against freeze- thaw damage in mammalian cells. Cryobiol. 25:121–130.Google Scholar
  58. Kuroda, Y. and Y. Takada. 1986. Freezing of Drosophila embryos after treatment with some chemicals. Annual Report, No. 36, National Institute of Genetics. Misima, Sizuoka-ken, Japan.Google Scholar
  59. Kusuda, J., T. Noguchi, K. Onimaru, and O. Yamashita. 1985. Maturation and hatching of eggs from silkworm ovaries preserved in liquid nitrogen. J. Insect Physiol. 31:963–967.Google Scholar
  60. Lea, C. H. and J. C. Hawke. 1952. The influence of water on the stability of lipovitellin and the effects of freezing and drying. Biochem. J. 52:105.Google Scholar
  61. Lee, R. E., R. A. Ring, and J. G. Baust. 1986. Low temperature tolerance in insects and other terrestrial arthropods: bibliography II. Cryo-Lett. 7:113–126.Google Scholar
  62. Lee, R. E., C.-P. Chen, and D. L. Denlinger. 1987. A rapid cold-hardening process in insects. Science 238:1415–1417.Google Scholar
  63. Lee, R. E. 1989. Insect cold hardiness: to freeze or not to freeze. Biosci. 39:308–312.Google Scholar
  64. Leibo, S. P., J. Farrant, P. Mazur, M. G. Hanna, and L. H. Smith. 1970. Effects of freezing on marrow stem cell suspensions: interactions of cooling and warming rates in the presence of PVP, sucrose or glycerol. Cryobiol. 6:315–332.Google Scholar
  65. Leibo, S. P., P. Mazur, and S. C. Jackowski. 1974. Factors affecting survival of mouse embryos during freezing and thawing. Exp. Cell Res. 89:79–88.Google Scholar
  66. Leibo, S. P., J. J. McGrath, and E. G. Cravalho. 1978. Microscopic observation of intracellular ice formation in mouse ova as function of cooling rate. Cryobiol. 15:257–271.Google Scholar
  67. Leopold, R. A. and R. R. Rojas. 1989. Invertebrate germplasm cryopreservation: potential, problems and prospects. In Annual Beltsville Symposium: Biotic Diversity and Germplasm Preservation; Global Imperatives, eds. L. Knutson and A. K. Stoner, pp. 355–377. Kluwer Academic Publishing, Boston.Google Scholar
  68. Levitt, J. 1980. Response of plants to environmental stress. Chilling, Freezing and High Temperature Stress, Vol. 1, pp. 23–64. Academic Press, New York.Google Scholar
  69. Limbourg, B. and M. Zalokar. 1973. Permeabilization of Drosophila eggs. Dev. Biol. 35:382–387.Google Scholar
  70. Lok, J. B., E. W. Cupp, M. J. Bernardo, and R. J. Pollack. 1983. Further studies on the development of Onchocerca spp. (Nematoda: Filarioidea) in nearctic black flies (Diptera: Simuliidae) Am. J. Trop. Med. Hyg. 32:1298–1305.Google Scholar
  71. Lopez-Farjul, C. and W. G. Hill. 1973. Genetic differences between populations of Drosophila melanogaster for a quantitative trait. I. Laboratory populations. Genet. Res. 2:69–78.Google Scholar
  72. Lovelock, J. E. 1957. The denaturation of lipid protein complexes as a cause of damage by freezing. Proc. R. Soc. [B101] 147:427.Google Scholar
  73. Lozina-Lozinsky, L. K. 1962. Survival of insects at super-low temperatures. Dokl. Akad. Nauk SSSR 147:1247–1249.Google Scholar
  74. Lozina-Lozinsky, L. K. 1963. Resistance of some insects to the temperature of liquid helium (-269°C) under conditions of intracellular freezing in absence of antifreezes. Cytol. Akad. Nauk. 5:220–221.Google Scholar
  75. Lynch, D. V., S. P. Myers, S. P. Leibo, R. J. Maclntyre, and P. L. Steponkus. 1988. Permeabilization of Drosophila eggs using isopropanol and hexane. DIS 67:88–89.Google Scholar
  76. Lynch, D. V., T.-T. Lin, S. P. Myers, S. P. Leibo, R. J. Maclntyre, R. E. Pitt, and P. L. Steponkus. 1989. A two-step method for permeabilization of Drosophila eggs. Cryobiol. 26:445–452.Google Scholar
  77. MacKenzie, A. P. 1970. Death of frozen yeast in the course of slow warming. In The Frozen Cell, Ciba Foundation Symposium, eds. G. E. W. Wolstenholme and M. O’Connor, pp. 89–96. Churchill, London.Google Scholar
  78. Margaritis, L. H. 1985. Structure and physiology of the egg shell. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 1, eds. G. A. Kerkut and L. I. Gilbert, pp. 154–230. Pergamon Press, Oxford.Google Scholar
  79. Massip, A. and P. Van der Zwalmen. 1982. In vitro survival of mouse embryos frozen in glycerol or glycerol-sucrose. Cryo-Lett. 3:326.Google Scholar
  80. Massip, A., P. Van der Zwalmen, and F. Leroy. 1984. Effect of stage of development on survival of mouse embryos frozen-thawed rapidly. Cryobiol. 21:574–577.Google Scholar
  81. Massip, A., P. Van der Zwalmen, B. Scheffen, and F. Ectors. 1986. Pregnancies following transfer of cattle embryos preserved by vitrification. Cryo-Lett. 7:270–273.Google Scholar
  82. Mazur, P. 1979. Slow freezing injury in mammalian cells. In Freezing of Mammalian Embryos, Ciba Foundation Symposium, No. 52, eds. K. Elliot and J. Whelan, pp. 19–42. Elsevier, Amsterdam.Google Scholar
  83. Mazur, P. 1984. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247:125–142.Google Scholar
  84. Mazur, P., S. P. Leibo, J. Farrant, E. H. Chu, M. G. Hanna, and L. H. Smith. 1970. Interactions of cooling rate, warming rate and protective additive on the survival of frozen mammalian cells. In The Frozen Cell, Ciba Foundation Symposium, pp. 69–88. Churchill, London.Google Scholar
  85. Mazur, P., U. Schneider, K. B. Jacobson, and A. P. Mahowald. 1988. Chilling injury in intact Drosophila eggs at various stages of embryonic development between 0 and -25°C in the absence of ice formation. Cryobiol. 25:544.Google Scholar
  86. McCall, J. W., J. Jun, and P. E. Thompson. 1975. Cryopreservation of infective larvae of Dipetalo- nema viteae. J. Parasitol. 61:340–342.Google Scholar
  87. McGrath, J. J. 1987. Cold shock: thermoelastic stress in chilled biological membranes. In Network Thermodynamics, Heat and Mass Transfer in Biotechnology, ed. K. R. Diller ASME Bed Vol. 5, HTD Vol. 90, pp. 57–66.Google Scholar
  88. Melnichenko, A.N. and Y.I. Vavilov. 1976. Many years keeping of drone semen when freezing in liquid nitrogen. Dokl. Vses. Akad. Nauk. 1:25–26.Google Scholar
  89. Meryman, H. T. 1974. Freezing injury and its prevention in living cells. Annu. Rev. Biophys. 3:341–363.Google Scholar
  90. Mitsuhashi, J. and K. Maramorosch. 1964. Leafhopper tissue culture: embryonic, nymphal and imaginai tissues from asceptic insects. Contrib. Boyce Thompson Inst. 22:435–460.Google Scholar
  91. Morrissey, R. E. and J. G. Baust. 1976. The ontogeny of cold tolerance in the gall flay, Eurosta solidaginis. J. Insect Physiol. 22:431–437.Google Scholar
  92. Moscona, A. 1950. Studies of the eggs of Bacillus libanicus (Orthoptera: Phasmidae). Moisture, dry material, and minerals in the developing egg. Quart. J. Mic. Sci. 91:195–203.Google Scholar
  93. Myers, S. P., D. V. Lynch, D. C. Knipple, S. P. Leibo, and P. L. Steponkus. 1988. Low-temperature sensitivity of Drosophila melanogaster embryos. Cryobiol. 25:544.Google Scholar
  94. Nishino, M., J. Bale, and J. G. Baust. 1988. The effects of cooling and warming rates on the cold-hardiness of Eurosta soldaginis (Fitch). Cryobiol. 25:519.Google Scholar
  95. Ohlsson, L. and H. A. Verhoef. 1988. Effects of diet composition on cold adaption in temperate Collembola. Comp. Biochem. Physiol. 91:475–479.Google Scholar
  96. Quinn, P. J. 1985. A lipid-phase separation model of low temperature damage to biological membranes. Cryobiol. 22:128–146.Google Scholar
  97. Rall, W. F., D. S. Reid, and C. Polge. 1984. Analysis of slow warming injury of mouse embryos by cryomicroscopical and physiochemical methods. Cryobiol. 21:106–121.Google Scholar
  98. Rall, W. F., M. J. Wood, and C. Kirby. 1985. In vivo development of mouse embryos cryopreserved by vitrification. Cryobiol. 22:603–605.Google Scholar
  99. Reaumur, R. A. F. 1736. Mémoires pour Servir a l’Histoire des Insectes, Vol. 2, pp. 141–147.L’Imprimerie Royale, Paris.Google Scholar
  100. Richerson, V. and E. A. Cameron. 1974. Differences in pheromone release and sexual behavior between laboratory-reared and wild gypsy moth adults. Environ. Entomol. 3:475–481.Google Scholar
  101. Ring, R. A 1980. Insects and their cells. In Low Temperature Preservation in Medicine and Biology, eds. M. J. Ashwood-Smith and J. Farrant, pp. 187–217. Pitman Medical, Tunbridge Wells, United Kingdom.Google Scholar
  102. Rojas, R. R., J. G. Riemann, and R. A. Leopold. 1989. Diapause and overwintering capabilities of the larva Homeosoma electellum (Lepidoptera: Pyralidae). Environ. Entomol. 18:552–557.Google Scholar
  103. Rudolph, A. S. and J. H. Crowe. 1985. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiol. 22:367–377.Google Scholar
  104. Rudolph, A. S., J. H. Crowe, and L. M. Crowe. 1986. Effect of three stabilizing agents—proline, betaine and trehalose—on membrane phospholipids. Arch. Biochem. Biophys. 245:134–143.Google Scholar
  105. Salt, R. W. 1961. Principles of insect cold-hardiness. Annu. Rev. Entomol. 6:55–74.Google Scholar
  106. Salt, R. W. 1962. Resistance of Poikilothermic animals to cold. Brit. Med. Bull. 17:5–8.Google Scholar
  107. Salt, R. W. 1966. Relation between time of freezing and temperature in supercooled larvae of Cephus cinctus Nort. Can. J. Zool. 44:947–952.Google Scholar
  108. Salt, R. W. 1969. The survival of insects at low temperatures. Symp. Soc. Exp. Biol. 23:331–350.Google Scholar
  109. Sawada, Y. and M. C. Chang. 1964. Tolerance of honey bee sperm to deep freezing. J. Econ. Entomol. 57:891–892.Google Scholar
  110. Schiller, E. L., V. M. Turner, H. F. Marroquin, and R. D’Antonio. 1979. The cryopreservation and in vitro cultivation of larval Onchocerca volvulus. Am. J. Trop. Med. Hyg. 28:997–1009.Google Scholar
  111. Schmid, H., L. Sanchez, and R. Nothiger. 1984. Heterospecific combinations of germ cells and gonadal soma between Drosophila melanogaster, D. mauritiana, and D. anannssae. Roux’s Arch. Dev. Biol. 194:99–106.Google Scholar
  112. Shimada, K. 1977. Effects of cryoprotective additives on intracellular ice formation and survival in very rapidly cooled HeLa cells. Contrib. Inst. Low Temp. Sci. Cer. B. 19:49–69.Google Scholar
  113. Shinbo, H. 1989. Survival of larval ovaries and testes frozen in liquid nitrogen in the silkworm, Bombyx mori. Cryobiol. 26:389–396.Google Scholar
  114. Sømme, L. 1966. The effect of temperature, anoxia, or injection of various substances on haemolymph composition and supercooling in larvae of Anagasta kuehniella (Zell.). J. Insect Physiol. 12:1069–1083.Google Scholar
  115. Sømme, L. 1968. The effect of acclimation of glycerol injection on mortality and pupation in larvae of Ephestia kuehniella after exposures at low temperatures. Entomol. Exp. Appl. 11:143–148.Google Scholar
  116. Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. 73:519–544.Google Scholar
  117. Sømme, L. and E.-M. Conradi-Larsen. 1977. Cold-hardiness of collembolans and oribatid mites from windswept mountain ridges. Oikos 29:118–126.Google Scholar
  118. Sonnenblick, B. P. 1950. The early embryology of Drosophila melanogaster. In The Biology of Drosophila, ed. M. Demerec, pp. 62–167. Wiley, New York.Google Scholar
  119. Sonobe H., A. Matsumoto, Y. Fukuzaki, and S. Fujiwara. 1979. Carbohydrate metabolism and restricted oxygen supply in the eggs of the silkworm, Bombyx mori. J. Insect Physiol. 25:381–388.Google Scholar
  120. Steponkus, P. L., S. P. Myers, D. V. Lynch, L. Gardner, V. Bronshteyn, S. P. Leibo, W. F. Rall, R. E. Pitts, T.-T. Lin and R. J. Maclntyre. 1990. Cryopreservation of Drosophila melanogaster embryos. Nature. 345:170–172.Google Scholar
  121. Strong-Gunderson, J. M. and R. A. Leopold. 1989. Cryobiology of Musca domestica: supercooling capacity and low-temperature tolerance. Environ. Entomol. 18:756–762.Google Scholar
  122. Storey, K. B. and J. M. Storey. 1988. Freeze tolerance in animals. Physiol. Rev. 68:27–84.Google Scholar
  123. Takahashi, T., A. Hirsh., E. F. Erbe, J. B. Bross, R. L. Steere, and R. J. Williams. 1986. Vitrification of human monocytes Cryobiol. 23:103–115.Google Scholar
  124. Takehara, I. and E. Asahina. 1960. Frost resistance and glycerol content in overwintering insects. Low Temp. Sci. Ser. B. 18:57–65.Google Scholar
  125. Tamura, T. and S. Sakate. 1985. Preservation of spermatozoa of the silkworm, Bombyx mori, by freezing. Sanshi Kenkyu. 134:123–128.Google Scholar
  126. Tanno, K. 1968. Frost resistance in the poplar sawfly, Trichiocampus populi Okamoto. V. Freezing injury at the liquid nitrogen temperature. Low Temp. Sci. Ser. B. 26:76–84.Google Scholar
  127. Tanno, K. and E. Asahina. 1964. Frost resistance in the poplar sawfly, Trichiocampus populi Okamoto. Low Temp. Sci. Ser. B. 22:59–70.Google Scholar
  128. Trounson, A. 1986. Preservation of human eggs and embryos. Fértil. Steril. 46:1–12.Google Scholar
  129. Varma, M. G. R., M. Pudney, and C. J. Leake. 1979. Methods in mosquito cell culture. In Practical Tissue Culture Applications, eds. K. Maramorosch and H. Hirumi, pp. 331–350. Academic Press, New York.Google Scholar
  130. Villavaso, E. J. 1974. Artificial insemination of the boll weevil. Ann. Entomol. Soc. Am. 67:825–827.Google Scholar
  131. Wasylyck, J. M., A. T. Tice, and J. G. Baust. 1988. Partial glass formation: a novel mechanism of insect cryoprotection. Cryobiol. 25:451–458.Google Scholar
  132. Withers, L. A. 1980. Preservation of germplasm. Int. Rev. Cytol. Suppl. 11:101–136.Google Scholar
  133. Womersley, C., P. S. Uster, A. S. Rudolph, and J. H. Crowe. 1986. Inhibition of dehydration-induced fusion between liposomal membranes by carbohydrates as measured by fluorescence energy transfer. Cryobiol. 23:245–255.Google Scholar
  134. Young, S. R. and W. Block. 1980. Experimental studies on the cold tolerance of Alaskozetes antarticus. J. Insect Physiol. 26:189–200.Google Scholar
  135. Young, D. G., A. Morales, R. D. Kreutzer, J. B. Alexander, A. Coredor, and R. B. Tesh. 1987. Isolations of Leishmania braziliensis (Kinetoplastida: Trypanosomatidae) from cryopreserved Colombian sand flies (Diptera: Psychodidae). J. Med Entomol. 23:587–589.Google Scholar
  136. Zachariassen, K. E. and H. T. Hammel. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287.Google Scholar
  137. Zachariassen, K. E., H. T. Hammel, and W. Schmidek. 1979. Studies on freezing injuries in Eleodes blanchardi beetles. Comp. Biochem. Biophysiol. 63:199–202.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Roger A. Leopold

There are no affiliations available

Personalised recommendations