Comparative Invertebrate Cold Hardiness

  • Stephen H. Loomis


Insects are the most thoroughly studied freeze-tolerant organisms. There are, however, several other groups of animals that can survive the presence of ice in their extracellular fluids. These include some lower vertebrates, such as frogs, turtles, and snakes and intertidal invertebrates. There are some basic similarities and differences in the mechanisms of freezing tolerance between insects and intertidal invertebrates, and it is the purpose of this chapter to compare and contrast these mechanisms.


Freezing Tolerance Mytilus Edulis Antifreeze Protein Cold Hardening Species Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anchordoguy, T. J., A. S. Rudolph, J. F. Carpenter, and J. H. Crowe. 1987. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiol. 24:324–331.CrossRefGoogle Scholar
  2. Anchordoguy, T. J., J. F. Carpenter, S. H. Loomis, and J. H. Crowe. 1988. Mechanisms of interaction of amino acids with phospholipid bilayers during freezing. Biochem. Biophys. Acta. 946:299–306.CrossRefGoogle Scholar
  3. Arakawa, T. and S. N. Timesheff. 1983. Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch. Biochem. Biophys. 224:169–177.CrossRefGoogle Scholar
  4. Arakawa, T. and S. N. Timesheff. 1985. The stabilization of proteins by osmolytes. Biophys. J. 47:411–414.CrossRefGoogle Scholar
  5. Arakawa, T., J. F. Carpenter, Y. A. Kito, and J. H. Crowe. 1990. The basis for toxicity of certain cryoprotectants: an hypothesis. Cryobiol. 27:401–415.CrossRefGoogle Scholar
  6. Aunaas, T. 1982a. Nucleating agents in the hemolymph of intertidal invertebrates tolerant to freezing. Cryo-Lett. 3:287.Google Scholar
  7. Aunaas, T. 1982b. Nucleating agents in the hemolymph of an intertidal mollusc tolerant to freezing. Experientia 38:1456–1457.CrossRefGoogle Scholar
  8. Aunaas, T., J. P. Denstad, and K. E. Zachariassen. 1988. Isolatory response promotes cold hardiness in blue mussels (Mytilus edulis). Cryo-Lett. 9:427.Google Scholar
  9. Baust, J. G. 1981. Biochemical correlates to cold hardening in insects. Cryobiology 18:186–198.CrossRefGoogle Scholar
  10. Baust, J. G. and R. E. Lee. 1981. Divergent mechanisms of frost hardiness in two populations of the gall fly, Eurosta solidaginis. J. Insect Physiol. 27:485–490.CrossRefGoogle Scholar
  11. Baust, J. G., R. Grandee, G. Condon and R. E. Morrissey. 1979. The diversity of overwintering strategies utilized by separate populations of gall insects. Physiol. Zool. 52:572–580.Google Scholar
  12. Baust, J. G., R. R. Rojas, and M. D. Hamilton. 1985. Life at low temperatures: representative insect adaptations. Cryo-Lett. 6:199–210.Google Scholar
  13. Carpenter, J. F., S. C. Hand, L. M. Crowe, and J. H. Crowe. 1986. Cryoprotection of phosphofructo-kinase with organic solutes: characterization of enhanced protection in the presence of divalent cations. Arch. Biochem. Biophys. 250:505–512.CrossRefGoogle Scholar
  14. Cook, P. A. and A. H. Lewis. 1971. Acquisition and loss of cold-tolerance in adult barnacles (Balanus balanoides) kept under laboratory conditions. Mar. Biol. 9:26–30.CrossRefGoogle Scholar
  15. Crowe, J. H. and L. M. Crowe. 1982. Hydration dependent hexagonal phase in a biological membrane. Arch. Biochem. Biophys. 217:582–587.CrossRefGoogle Scholar
  16. Crowe, J. H. and L. M. Crowe. 1983. Induction of anhydrobiosis: membrane changes during drying. Cryobiol. 19:317–328.CrossRefGoogle Scholar
  17. Crowe, J. H. and L. M. Crowe. 1985. Effects of dehydration on membranes and membrane stabilization at low water activities. In Biological Membranes, ed. D. Chapman, Vol. 5. Academic Press, New York.Google Scholar
  18. Crowe, J. H. and L. M. Crowe. 1986. Stabilization of membranes in anhydrobiotic organisms. In Membranes, Metabolism and Dry Organisms, ed. A. C. Leopold, pp. 188–209. Comstock Publishing Associates, Ithaca.Google Scholar
  19. Crowe, J. H., L. M. Crowe, and S. Jackson. 1983a. Preservation of structure and functional activity in lyophilized sarcoplasmic reticulum. Arch. Biochem. Biophys. 220:477–484.CrossRefGoogle Scholar
  20. Crowe, J. H., L. M. Crowe, and R. Mouradian. 1983b. Stabilization of biological membranes at low water activities. Cryobiol. 20:346–356.CrossRefGoogle Scholar
  21. Crowe, J. H., L. M. Crowe, J. F. Carpenter, and C. A. Wistrom. 1987. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242:1–10.Google Scholar
  22. Crowe, L. M., J. H. Crowe, A. Rudolph, C. Womersley, and L. Appel. 1985. Stabilization of freeze- dried liposomes: effects of various carbohydrates. Arch. Biochem. Biophys. 242:240–247.CrossRefGoogle Scholar
  23. Cullis, P. R. and M. J. Hope. 1978. Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature 211:612–674.Google Scholar
  24. Duman, J. G. 1977. Variations in macromolecular antifreeze levels in larvae of the darkling beetle, Meracantha contracta. J. Exp. Zool. 201:85–92.CrossRefGoogle Scholar
  25. Duman, J. G. 1979. Thermal-hysteresis-factors in overwintering insects. J. Insect Physiol. 25:805–810.CrossRefGoogle Scholar
  26. Duman, J. and K. Horwath. 1983. The role of hemolymph proteins in the cold tolerance of insects. Annu. Rev. Physiol. 45:261–270.CrossRefGoogle Scholar
  27. Duman, J. G., J. P. Morris, and F. J. Castellino. 1984. Purification and composition of an ice nucleating protein from queens of the hornet, Vespula maculata. J. Comp. Physiol. 154:79–83.Google Scholar
  28. Duman, J. G., L. G. Neven, J. M. Beals, K. R. Olson and F. J. Castellino. 1985. Freeze-tolerance adaptations, including hemolymph protein and lipoprotein nucleators in the larvae of the cranefly, Tipula trivittata. J. Insect Physiol. 31:1–8.CrossRefGoogle Scholar
  29. Franks, Felix. 1985. Biophysics and Biochemistry at Low Temperatures. Cambridge University Press, Cambridge.Google Scholar
  30. Hayes, D. R. and S. H. Loomis. 1985. Evidence for a proteinaceous ice nucleator in the hemolymph of the pulmonate gastropod, Melampus bidentatus. Cryo-Lett. 6:418–421.Google Scholar
  31. Hochachka, P. W. and G. N. Somero. 1973. Strategies of Biochemical Adaptation. W. B. Saunders Company, Philadelphia.Google Scholar
  32. Ibing, V. J. and H. Theede. 1975. Zur Gefrierresistenz Litoralen Mollusken von der deutschen Nordseekuste. Kieler Meeresforsch. 31:44–48.Google Scholar
  33. Ivanovici, A. M., S. F. Ranier, and V. A. Wadley. 1981. Free amino acids in three species of mollusc: responses to factors associated with reduced salinity. Comp Biochem. Physiol. 70A:17–22.CrossRefGoogle Scholar
  34. Knight, C.A. and J. G. Duman. 1986. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiol. 23:256–262.CrossRefGoogle Scholar
  35. Lee, A. G. 1977a. Lipid phase transitions and phase diagrams I. Lipid phase transitions. Biochem. Biophys. Acta 472:285–344.Google Scholar
  36. Lee, A. G. 1977b. Lipid phase transitions and phase diagrams II. Mixtures involving lipids. Biochem. Biophys. Acta 472:285–344.Google Scholar
  37. Loomis, S. H. 1985. Seasonal changes in the freezing tolerance of the intertidal pulmonate gastropod Melampus bidentatus, Say. Can J. Zool. 63:2021–2025.CrossRefGoogle Scholar
  38. Loomis, S. H. and D. R. Hayes. 1987. Effects of temperature, food deprivation and photoperiod on the cold tolerance of the intertidal pulmonate gastropod, Melampus bidentatus. Cryo-Lett. 8:25–34.Google Scholar
  39. Loomis, S. H., J. F. Carpenter, and J. H. Crowe. 1988. Identification of strombine and taurine as cryoprotectants in the intertidal bivalve, Mytilus edulis. Biochem. Biophys. Acta 943:113–118.CrossRefGoogle Scholar
  40. Loomis, S. H., J. F. Carpenter, T. J. Anchordoguy. J. H. Crowe, and B. R. Branchini. 1989. Cryoprotective capacity of end-products of anaerobic metabolism. J. Exp. Zool. 252:9–15.CrossRefGoogle Scholar
  41. MacDonald, R. I. and R. C. MacDonald. 1983. Lipid mixing during freeze-thawing of liposomal membranes as monitored by fluorescence energy transfer. Biochem. Biophys. Acta 735:234–251.CrossRefGoogle Scholar
  42. Madden, T. D., M. B. Bally, M. J. Hope, P. R. Cullis, H. P. Schieren, and A. S. Janoff. 1985. Protection of large unilamellar vesicles by trehalose during dehydration retention of vesicle contents. Biochem. Biophys. Acta 817:64–74.Google Scholar
  43. Murphy, D.J. 1977. A calcium-dependent mechanism for increasing freezing tolerance of the bivalve mollusc Modiolus demissus. J. Exp. Biol. 69:13–21.Google Scholar
  44. Murphy, D. J. 1979. A comparative study of the freezing tolerances of the marine snails, Littorina littorea and Nassarius obsoletus. Physiol. Zool. 52:219–230.Google Scholar
  45. Murphy, D.J. 1983. Freezing resistance in intertidal invertebrates. Annu. Rev. Physiol. 45:289–299.CrossRefGoogle Scholar
  46. Murphy, D. J. and L. C. Johnson. 1980. Physical and temporal factors influencing the freezing tolerance of the marine snail Littorina littorea. Biol. Bull. 158:220–232.CrossRefGoogle Scholar
  47. Murphy, D. J. and S. K. Pierce. 1975. The physiological basis for changing in the freezing tolerance of intertidal molluscs. I. Response to subfreezing temperatures and the influence of salinity and temperature acclimation. J. Exp. Zool. 193:313–322.CrossRefGoogle Scholar
  48. Pick, U. 1981. Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Arch. Biochem. Biophys. 212:186–194.CrossRefGoogle Scholar
  49. Portis, A., C. Newton, W. Pangborn, and D. Papahadjopoulos. 1979. Studies on the mechanism of membrane fusion: evidence for an inter-membrane calcium ion-phospholipid complex synergism with magnesium ion and inhibitory spectrin. Biochemistry 18:780–790.CrossRefGoogle Scholar
  50. Quinn, P. J. 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiol. 22:128–146.CrossRefGoogle Scholar
  51. Roland, W. and R. A. Ring. 1977. Cold, freezing and desiccation tolerance of the limpet Acmea digitalis. Cryobiol. 14:228–235.CrossRefGoogle Scholar
  52. Rudolph, A. S. and J. H. Crowe. 1985. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiol. 22:367–377.CrossRefGoogle Scholar
  53. Rudolph, A. S., J. H. Crowe, and L. M. Crowe. 1986. Effects of the three stabilizing agents—proline, betaine and trehalose—on membrane phospholipids. Arch. Biochem. Biophys. 245:124–143.CrossRefGoogle Scholar
  54. Rudolph, A. S. and J. H. Crowe. 1986. A calorimetric and infrared spectroscopic study of the stabilizing solute proline. Biophys. J. 50:423–430.CrossRefGoogle Scholar
  55. Salt, R. W. 1961. Principles of insect cold hardiness. Annu. Rev. Entomol. 6:55–74.CrossRefGoogle Scholar
  56. Shimada, K., S. F. Sakagami, K. Honma, and H. Tsutsui. 1984. Seasonal changes of glycogen/ trehalose contents, supercooling points and survival rate in mature larvae of the overwintering soybean pod borer Leguminivora glycinivorella. J. Insect Physiol. 30:369–373.CrossRefGoogle Scholar
  57. Storey, J. M. and K. B. Storey. 1983. Regulation of cryoprotectant metabolism in the overwintering gall fly, Eurosta solidaginis: temperature control of glycerol and sorbitol levels. J. Comp. Physiol. 149:495–502.Google Scholar
  58. Storey, K. B., J. G. Baust, and J. M. Storey. 1981. Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. J. Comp. Physiol. 144:183–190.Google Scholar
  59. Strange, K. B. and J. H. Crowe. 1979. Acclimation to successive short term salinity changes by the bivalve Modiolus demissus II. Nitrogen metabolism. J. Exp. Zool. 210:227–235.CrossRefGoogle Scholar
  60. Strauss, G. and H. Hauser. 1986. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc. Nat. Acad. Sci. USA 83:2422–2426.CrossRefGoogle Scholar
  61. Strauss, G., P. Schurtenberger, and H. Hauser. 1986. The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze-thawing and freeze-drying. Biochem. Biophys. Acta 858:169–180.CrossRefGoogle Scholar
  62. Sanford, C. 1980. The Hydrophobic Effect, Wiley, New York.Google Scholar
  63. Theede, H. 1972. Vergleichende Okologisch-physiologische Untersuchungen zur Zellularen Kaltere-sistenz mariner Envertebraten. Mar. Biol. 36:183–189.CrossRefGoogle Scholar
  64. Theede, H., R. Schneppenheim, and L. Beress. 1976. Frostschutzglykoproteine bei Mytilus edulisl Mar. Biol. 36:183–189.CrossRefGoogle Scholar
  65. Tooke, N. E. and D. L. Holland. 1985a. Phospholipid fatty acid composition and cold tolerance in two species of barnacle, Balanus balanoides and Elminus modestus. I. Summer versus winter variations in phospholipid fatty acid composition of whole animals. J. Exp. Mar. Biol. Ecol. 87:241–253.CrossRefGoogle Scholar
  66. Tooke, N. E. and D. L. Holland. 1985b. Phospholipid fatty acid composition and cold tolerance in two species of barnacle, Balanus balanoides and Elminus modestus. II. Isolation and phospholipid fatty acid composition of subcellular membrane fractions. J. Exp. Mar. Biol. Ecol. 87:255–269.CrossRefGoogle Scholar
  67. Uster, P. S. and D. W. Deamer. 1981. Fusion competence of phosphatidylserine-containing liposomes quantitatively measured by fluorescence energy transfer assay. Arch. Biochem. Biophys. 209:385–395.CrossRefGoogle Scholar
  68. Womersley, C., P. S. Uster, A. S. Rudolph, and J. H. Crowe. 1986. Inhibition of dehydration-induced fusion between liposomal membranes by carbohydrates as measured by fluorescence energy transfer. Cryobiol. 23:245–255.CrossRefGoogle Scholar
  69. Wunderlich, F., W. Kreutz, P. Mahler, A. Ronai, and G. Heppeler. 1978. Thermotropic fluid disordered “discontinuous” phase separation in microsomal lipids of tetrahymena. An x-ray diffraction study. Biochem. 17:2005–2010.CrossRefGoogle Scholar
  70. Zandee, P. I., J. H. Kluytmans, W. Zurburg, and H. Pieters. 1980. Seasonal variations in biochemical composition of Mytilus edulis with reference to energy metabolism and gametogenesis. Neth. J. Sea Res. 14:1–29.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Stephen H. Loomis

There are no affiliations available

Personalised recommendations