Skip to main content

Comparative Invertebrate Cold Hardiness

  • Chapter
Insects at Low Temperature

Abstract

Insects are the most thoroughly studied freeze-tolerant organisms. There are, however, several other groups of animals that can survive the presence of ice in their extracellular fluids. These include some lower vertebrates, such as frogs, turtles, and snakes and intertidal invertebrates. There are some basic similarities and differences in the mechanisms of freezing tolerance between insects and intertidal invertebrates, and it is the purpose of this chapter to compare and contrast these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anchordoguy, T. J., A. S. Rudolph, J. F. Carpenter, and J. H. Crowe. 1987. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiol. 24:324–331.

    Article  Google Scholar 

  • Anchordoguy, T. J., J. F. Carpenter, S. H. Loomis, and J. H. Crowe. 1988. Mechanisms of interaction of amino acids with phospholipid bilayers during freezing. Biochem. Biophys. Acta. 946:299–306.

    Article  Google Scholar 

  • Arakawa, T. and S. N. Timesheff. 1983. Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch. Biochem. Biophys. 224:169–177.

    Article  Google Scholar 

  • Arakawa, T. and S. N. Timesheff. 1985. The stabilization of proteins by osmolytes. Biophys. J. 47:411–414.

    Article  Google Scholar 

  • Arakawa, T., J. F. Carpenter, Y. A. Kito, and J. H. Crowe. 1990. The basis for toxicity of certain cryoprotectants: an hypothesis. Cryobiol. 27:401–415.

    Article  Google Scholar 

  • Aunaas, T. 1982a. Nucleating agents in the hemolymph of intertidal invertebrates tolerant to freezing. Cryo-Lett. 3:287.

    Google Scholar 

  • Aunaas, T. 1982b. Nucleating agents in the hemolymph of an intertidal mollusc tolerant to freezing. Experientia 38:1456–1457.

    Article  Google Scholar 

  • Aunaas, T., J. P. Denstad, and K. E. Zachariassen. 1988. Isolatory response promotes cold hardiness in blue mussels (Mytilus edulis). Cryo-Lett. 9:427.

    Google Scholar 

  • Baust, J. G. 1981. Biochemical correlates to cold hardening in insects. Cryobiology 18:186–198.

    Article  Google Scholar 

  • Baust, J. G. and R. E. Lee. 1981. Divergent mechanisms of frost hardiness in two populations of the gall fly, Eurosta solidaginis. J. Insect Physiol. 27:485–490.

    Article  Google Scholar 

  • Baust, J. G., R. Grandee, G. Condon and R. E. Morrissey. 1979. The diversity of overwintering strategies utilized by separate populations of gall insects. Physiol. Zool. 52:572–580.

    Google Scholar 

  • Baust, J. G., R. R. Rojas, and M. D. Hamilton. 1985. Life at low temperatures: representative insect adaptations. Cryo-Lett. 6:199–210.

    Google Scholar 

  • Carpenter, J. F., S. C. Hand, L. M. Crowe, and J. H. Crowe. 1986. Cryoprotection of phosphofructo-kinase with organic solutes: characterization of enhanced protection in the presence of divalent cations. Arch. Biochem. Biophys. 250:505–512.

    Article  Google Scholar 

  • Cook, P. A. and A. H. Lewis. 1971. Acquisition and loss of cold-tolerance in adult barnacles (Balanus balanoides) kept under laboratory conditions. Mar. Biol. 9:26–30.

    Article  Google Scholar 

  • Crowe, J. H. and L. M. Crowe. 1982. Hydration dependent hexagonal phase in a biological membrane. Arch. Biochem. Biophys. 217:582–587.

    Article  Google Scholar 

  • Crowe, J. H. and L. M. Crowe. 1983. Induction of anhydrobiosis: membrane changes during drying. Cryobiol. 19:317–328.

    Article  Google Scholar 

  • Crowe, J. H. and L. M. Crowe. 1985. Effects of dehydration on membranes and membrane stabilization at low water activities. In Biological Membranes, ed. D. Chapman, Vol. 5. Academic Press, New York.

    Google Scholar 

  • Crowe, J. H. and L. M. Crowe. 1986. Stabilization of membranes in anhydrobiotic organisms. In Membranes, Metabolism and Dry Organisms, ed. A. C. Leopold, pp. 188–209. Comstock Publishing Associates, Ithaca.

    Google Scholar 

  • Crowe, J. H., L. M. Crowe, and S. Jackson. 1983a. Preservation of structure and functional activity in lyophilized sarcoplasmic reticulum. Arch. Biochem. Biophys. 220:477–484.

    Article  Google Scholar 

  • Crowe, J. H., L. M. Crowe, and R. Mouradian. 1983b. Stabilization of biological membranes at low water activities. Cryobiol. 20:346–356.

    Article  Google Scholar 

  • Crowe, J. H., L. M. Crowe, J. F. Carpenter, and C. A. Wistrom. 1987. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242:1–10.

    Google Scholar 

  • Crowe, L. M., J. H. Crowe, A. Rudolph, C. Womersley, and L. Appel. 1985. Stabilization of freeze- dried liposomes: effects of various carbohydrates. Arch. Biochem. Biophys. 242:240–247.

    Article  Google Scholar 

  • Cullis, P. R. and M. J. Hope. 1978. Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature 211:612–674.

    Google Scholar 

  • Duman, J. G. 1977. Variations in macromolecular antifreeze levels in larvae of the darkling beetle, Meracantha contracta. J. Exp. Zool. 201:85–92.

    Article  Google Scholar 

  • Duman, J. G. 1979. Thermal-hysteresis-factors in overwintering insects. J. Insect Physiol. 25:805–810.

    Article  Google Scholar 

  • Duman, J. and K. Horwath. 1983. The role of hemolymph proteins in the cold tolerance of insects. Annu. Rev. Physiol. 45:261–270.

    Article  Google Scholar 

  • Duman, J. G., J. P. Morris, and F. J. Castellino. 1984. Purification and composition of an ice nucleating protein from queens of the hornet, Vespula maculata. J. Comp. Physiol. 154:79–83.

    Google Scholar 

  • Duman, J. G., L. G. Neven, J. M. Beals, K. R. Olson and F. J. Castellino. 1985. Freeze-tolerance adaptations, including hemolymph protein and lipoprotein nucleators in the larvae of the cranefly, Tipula trivittata. J. Insect Physiol. 31:1–8.

    Article  Google Scholar 

  • Franks, Felix. 1985. Biophysics and Biochemistry at Low Temperatures. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hayes, D. R. and S. H. Loomis. 1985. Evidence for a proteinaceous ice nucleator in the hemolymph of the pulmonate gastropod, Melampus bidentatus. Cryo-Lett. 6:418–421.

    Google Scholar 

  • Hochachka, P. W. and G. N. Somero. 1973. Strategies of Biochemical Adaptation. W. B. Saunders Company, Philadelphia.

    Google Scholar 

  • Ibing, V. J. and H. Theede. 1975. Zur Gefrierresistenz Litoralen Mollusken von der deutschen Nordseekuste. Kieler Meeresforsch. 31:44–48.

    Google Scholar 

  • Ivanovici, A. M., S. F. Ranier, and V. A. Wadley. 1981. Free amino acids in three species of mollusc: responses to factors associated with reduced salinity. Comp Biochem. Physiol. 70A:17–22.

    Article  Google Scholar 

  • Knight, C.A. and J. G. Duman. 1986. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiol. 23:256–262.

    Article  Google Scholar 

  • Lee, A. G. 1977a. Lipid phase transitions and phase diagrams I. Lipid phase transitions. Biochem. Biophys. Acta 472:285–344.

    Google Scholar 

  • Lee, A. G. 1977b. Lipid phase transitions and phase diagrams II. Mixtures involving lipids. Biochem. Biophys. Acta 472:285–344.

    Google Scholar 

  • Loomis, S. H. 1985. Seasonal changes in the freezing tolerance of the intertidal pulmonate gastropod Melampus bidentatus, Say. Can J. Zool. 63:2021–2025.

    Article  Google Scholar 

  • Loomis, S. H. and D. R. Hayes. 1987. Effects of temperature, food deprivation and photoperiod on the cold tolerance of the intertidal pulmonate gastropod, Melampus bidentatus. Cryo-Lett. 8:25–34.

    Google Scholar 

  • Loomis, S. H., J. F. Carpenter, and J. H. Crowe. 1988. Identification of strombine and taurine as cryoprotectants in the intertidal bivalve, Mytilus edulis. Biochem. Biophys. Acta 943:113–118.

    Article  Google Scholar 

  • Loomis, S. H., J. F. Carpenter, T. J. Anchordoguy. J. H. Crowe, and B. R. Branchini. 1989. Cryoprotective capacity of end-products of anaerobic metabolism. J. Exp. Zool. 252:9–15.

    Article  Google Scholar 

  • MacDonald, R. I. and R. C. MacDonald. 1983. Lipid mixing during freeze-thawing of liposomal membranes as monitored by fluorescence energy transfer. Biochem. Biophys. Acta 735:234–251.

    Article  Google Scholar 

  • Madden, T. D., M. B. Bally, M. J. Hope, P. R. Cullis, H. P. Schieren, and A. S. Janoff. 1985. Protection of large unilamellar vesicles by trehalose during dehydration retention of vesicle contents. Biochem. Biophys. Acta 817:64–74.

    Google Scholar 

  • Murphy, D.J. 1977. A calcium-dependent mechanism for increasing freezing tolerance of the bivalve mollusc Modiolus demissus. J. Exp. Biol. 69:13–21.

    Google Scholar 

  • Murphy, D. J. 1979. A comparative study of the freezing tolerances of the marine snails, Littorina littorea and Nassarius obsoletus. Physiol. Zool. 52:219–230.

    Google Scholar 

  • Murphy, D.J. 1983. Freezing resistance in intertidal invertebrates. Annu. Rev. Physiol. 45:289–299.

    Article  Google Scholar 

  • Murphy, D. J. and L. C. Johnson. 1980. Physical and temporal factors influencing the freezing tolerance of the marine snail Littorina littorea. Biol. Bull. 158:220–232.

    Article  Google Scholar 

  • Murphy, D. J. and S. K. Pierce. 1975. The physiological basis for changing in the freezing tolerance of intertidal molluscs. I. Response to subfreezing temperatures and the influence of salinity and temperature acclimation. J. Exp. Zool. 193:313–322.

    Article  Google Scholar 

  • Pick, U. 1981. Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Arch. Biochem. Biophys. 212:186–194.

    Article  Google Scholar 

  • Portis, A., C. Newton, W. Pangborn, and D. Papahadjopoulos. 1979. Studies on the mechanism of membrane fusion: evidence for an inter-membrane calcium ion-phospholipid complex synergism with magnesium ion and inhibitory spectrin. Biochemistry 18:780–790.

    Article  Google Scholar 

  • Quinn, P. J. 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiol. 22:128–146.

    Article  Google Scholar 

  • Roland, W. and R. A. Ring. 1977. Cold, freezing and desiccation tolerance of the limpet Acmea digitalis. Cryobiol. 14:228–235.

    Article  Google Scholar 

  • Rudolph, A. S. and J. H. Crowe. 1985. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiol. 22:367–377.

    Article  Google Scholar 

  • Rudolph, A. S., J. H. Crowe, and L. M. Crowe. 1986. Effects of the three stabilizing agents—proline, betaine and trehalose—on membrane phospholipids. Arch. Biochem. Biophys. 245:124–143.

    Article  Google Scholar 

  • Rudolph, A. S. and J. H. Crowe. 1986. A calorimetric and infrared spectroscopic study of the stabilizing solute proline. Biophys. J. 50:423–430.

    Article  Google Scholar 

  • Salt, R. W. 1961. Principles of insect cold hardiness. Annu. Rev. Entomol. 6:55–74.

    Article  Google Scholar 

  • Shimada, K., S. F. Sakagami, K. Honma, and H. Tsutsui. 1984. Seasonal changes of glycogen/ trehalose contents, supercooling points and survival rate in mature larvae of the overwintering soybean pod borer Leguminivora glycinivorella. J. Insect Physiol. 30:369–373.

    Article  Google Scholar 

  • Storey, J. M. and K. B. Storey. 1983. Regulation of cryoprotectant metabolism in the overwintering gall fly, Eurosta solidaginis: temperature control of glycerol and sorbitol levels. J. Comp. Physiol. 149:495–502.

    Google Scholar 

  • Storey, K. B., J. G. Baust, and J. M. Storey. 1981. Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. J. Comp. Physiol. 144:183–190.

    Google Scholar 

  • Strange, K. B. and J. H. Crowe. 1979. Acclimation to successive short term salinity changes by the bivalve Modiolus demissus II. Nitrogen metabolism. J. Exp. Zool. 210:227–235.

    Article  Google Scholar 

  • Strauss, G. and H. Hauser. 1986. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc. Nat. Acad. Sci. USA 83:2422–2426.

    Article  Google Scholar 

  • Strauss, G., P. Schurtenberger, and H. Hauser. 1986. The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze-thawing and freeze-drying. Biochem. Biophys. Acta 858:169–180.

    Article  Google Scholar 

  • Sanford, C. 1980. The Hydrophobic Effect, Wiley, New York.

    Google Scholar 

  • Theede, H. 1972. Vergleichende Okologisch-physiologische Untersuchungen zur Zellularen Kaltere-sistenz mariner Envertebraten. Mar. Biol. 36:183–189.

    Article  Google Scholar 

  • Theede, H., R. Schneppenheim, and L. Beress. 1976. Frostschutzglykoproteine bei Mytilus edulisl Mar. Biol. 36:183–189.

    Article  Google Scholar 

  • Tooke, N. E. and D. L. Holland. 1985a. Phospholipid fatty acid composition and cold tolerance in two species of barnacle, Balanus balanoides and Elminus modestus. I. Summer versus winter variations in phospholipid fatty acid composition of whole animals. J. Exp. Mar. Biol. Ecol. 87:241–253.

    Article  Google Scholar 

  • Tooke, N. E. and D. L. Holland. 1985b. Phospholipid fatty acid composition and cold tolerance in two species of barnacle, Balanus balanoides and Elminus modestus. II. Isolation and phospholipid fatty acid composition of subcellular membrane fractions. J. Exp. Mar. Biol. Ecol. 87:255–269.

    Article  Google Scholar 

  • Uster, P. S. and D. W. Deamer. 1981. Fusion competence of phosphatidylserine-containing liposomes quantitatively measured by fluorescence energy transfer assay. Arch. Biochem. Biophys. 209:385–395.

    Article  Google Scholar 

  • Womersley, C., P. S. Uster, A. S. Rudolph, and J. H. Crowe. 1986. Inhibition of dehydration-induced fusion between liposomal membranes by carbohydrates as measured by fluorescence energy transfer. Cryobiol. 23:245–255.

    Article  Google Scholar 

  • Wunderlich, F., W. Kreutz, P. Mahler, A. Ronai, and G. Heppeler. 1978. Thermotropic fluid disordered “discontinuous” phase separation in microsomal lipids of tetrahymena. An x-ray diffraction study. Biochem. 17:2005–2010.

    Article  Google Scholar 

  • Zandee, P. I., J. H. Kluytmans, W. Zurburg, and H. Pieters. 1980. Seasonal variations in biochemical composition of Mytilus edulis with reference to energy metabolism and gametogenesis. Neth. J. Sea Res. 14:1–29.

    Article  Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Loomis, S.H. (1991). Comparative Invertebrate Cold Hardiness. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics