Advertisement

Behavioral and Physiological Adaptations to Cold in a Freeze-Tolerant Arctic Insect

  • Olga Kukal

Abstract

Insects inhabiting the polar and temperate zones commonly overwinter in diapause or quiescent states (Tauber et al., 1986). Although diapause has traditionally been implicated with cold hardiness, diapause is probably phylogeneti-cally unrelated to cold hardiness (see Chapter 8). Nevertheless, both diapause and cold hardiness are usually induced by the same environmental cues, such as temperature, photoperiod, thermoperiod, or nutrition (Beck, 1983). Despite the vast differences in environmental constraints between arctic and temperate bi-omes, cold-tolerant insects typical of these regions have adopted similar modes of overwintering: freeze tolerance or freeze avoidance. In response to a different set of environmental stimuli, have the arctic species evolved any mechanisms of overwintering that differ from their temperate relatives? Arctic insects that survive inclement winters and short summer seasons show adaptations to cold that are uncommon or unique to cold tolerant species (Miller, 1982). One such species is Gynaephora groenlandica.

Keywords

Nuclear Magnetic Resonance Freeze Tolerance Nuclear Magnetic Resonance Spectroscopy Gypsy Moth Cold Hardiness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R. J., J. Fisher, and T. Loftus. 1988. Introduction to NMR Spectroscopy. Wiley, New York.Google Scholar
  2. Ayres, M. P. and S. F. MacLean. 1987. Development of birch leaves and the growth energetics of Epirrita autumnata (Geometridae). Ecology 68:558–468.CrossRefGoogle Scholar
  3. Baust, J. G. and R. R. Rojas. 1985. Review—insect cold-hardiness: Facts and fancy. J. Insect Physiol 31:755–759.CrossRefGoogle Scholar
  4. Beck, S. D. 1983. Insect thermoperiodism. Annu. Rev. Entomol. 28:91–108.CrossRefGoogle Scholar
  5. Bertram, G. C. L. 1935. The low temperature limit of activity of arctic insects. J. Anim. Ecol. 4:35–42.CrossRefGoogle Scholar
  6. Bliss, L. C., ed. 1977. Truelove Lowland, Devon Island, Canada: A High Arctic Ecosystem. University of Alberta Press, Edmonton.Google Scholar
  7. Brett, J. R. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11:99–113.Google Scholar
  8. Buchanan, G. W. and K. B. Storey. 1983. In vivo detection of cryoprotectants and lipids in overwintering larvae using carbon-13 NMR spectroscopy. Can. J. Cell. Biol. 61:1260–1264.CrossRefGoogle Scholar
  9. Campbell, R. W. 1981. Population dynamics. In The Gypsy Moth: Research Toward Integrated PestManagement, eds. C. C. Doane and M. L. McManus, pp. 65–214. US Department of Agriculture, Washington, DC.Google Scholar
  10. Chapin, F. S., J. D. McKendrick, and D. A. Johnson. 1986. Seasonal changes in carbon fractions in Alaskan tundra plants of differing growth form: Implications for herbivory. J. Ecol. 74:707–731.CrossRefGoogle Scholar
  11. Chen, C. -P., D. L. Denlinger, and R. E. Lee. 1987. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.Google Scholar
  12. Chino, H. 1957a. Carbohydrate metabolism in diapause egg of the silkworm, Bombyx mori I. Diapause and the change in glycogen content. Embryologia 3:295–316.CrossRefGoogle Scholar
  13. Chino, H. 1957b. Conversion of glycogen to sorbitol and glycerol in the diapause egg of the Bombyx silkworm. Nature 180:606–607.CrossRefGoogle Scholar
  14. Chino, H. 1958. Carbohydrate metabolism in diapause eggs of the silkworm, Bombyx mori. II. Conversion of glycogen into sorbitol and glycerol during diapause. J. Insect Physiol. 2:1–12.CrossRefGoogle Scholar
  15. Crowe, J. H. and L. M. Crowe. 1982. Induction of anhydrobiosis: membrane changes during drying. Cryobiol. 19:317–328.CrossRefGoogle Scholar
  16. Danks, H. V. 1986. Insect plant interactions in arctic regions. Rev. Entomol. Quebec 31:52–75.Google Scholar
  17. Danks, H. V. 1981. Arctic Arthropods. A Review of Systematics and Ecology with Particular Reference to the North American Fauna. Entomological Society of Canada, Ottawa.Google Scholar
  18. Dawson, T. E. 1987. Comparative ecophysiological adaptations in arctic and alpine populations of a dioecious shrub, Salix árctica Pall. PhD Thesis, University of Washington, Seattle.Google Scholar
  19. Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581.CrossRefGoogle Scholar
  20. Ferguson, D. C. 1978. Noctuoidea, Lymantriidae. In The Moths of North America North of Mexico, ed. R. B. Dominick, pp. 17–21. E. W. Classey and The Wedge Entomological Research Foundation, London.Google Scholar
  21. Gadian, D. G. 1982. Nuclear Magnetic Resonance and its Applications to Living Systems. Oxford University Press, London.Google Scholar
  22. Hamilton, W. J. 1973. Life’s Color Code. McGraw-Hill, New York.Google Scholar
  23. Haukioja, E., P. Hiemela, and S. Siren. 1985. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation in the mountain birch Betula pubescens spp tortuosa. Oecologia 65:214–222.CrossRefGoogle Scholar
  24. Hayakawa, Y. and H. Chino. 1982. Phosphofructokinase as a possible key enzyme regulating glycerol and trehalose accumulation in diapausing insects. Insect Biochem. 12:639–692.CrossRefGoogle Scholar
  25. Hochachka, P. W. and G. N. Somero. 1985. Biochemical Adaptation. Princeton University Press, Princeton.Google Scholar
  26. Keeley, L. L. 1981. Neuroendocrine regulation of mitochondrial development and function in the insect fat body. In Energy Metabolism in Insects, ed. R. G. H. Downer, pp. 207–239. Plenum. Press, New York.CrossRefGoogle Scholar
  27. Kevan, P. G., T. J. Jensen, and J. D. Shorthouse. 1982. Body temperatures and behavioral thermoregulation of high arctic wooly-bear caterpillars and pupae (Gynaephora rossii, Lymantriidae: Lepi-doptera) and the importance of sunshine. Arctic Alpine Res. 14:125–213.CrossRefGoogle Scholar
  28. Kevan, P. G. 1975. Sun tracking solar furnaces in high arctic flowers: significance for pollination and insects. Science 189:723–726.CrossRefGoogle Scholar
  29. Kevan, P. G. and J. D. Shorthouse. 1970. Behavioral thermoregulation by high arctic butterflies. Arctic 23:268–279.Google Scholar
  30. Knapp, R. and T. M. Casey. 1986. Thermal ecology, behavior, and growth of gypsy moth and eastern tent caterpillars. Ecology 67:598–608.CrossRefGoogle Scholar
  31. Krog, J. 1955. Notes on temperature measurements indicative of special organization in arctic and subarctic plants for utilization of radiated heat from the sun. Physiol. Plant. 8:836–839.CrossRefGoogle Scholar
  32. Kukal, O. 1984. Life history and adaptations of a high arctic insect, Gynaephora groenlandica (Wöcke) (Lepidoptera: Lymantriidae). MS thesis, University of Guelph, Guelph.Google Scholar
  33. Kukal, O. 1988. Behavioral and physiological adaptations to cold in a freeze tolerant high arctic insect, Gynaephora groenlandica (Wöcke) (Lepidoptera: Lymantriidae). PhD Thesis, University of Notre Dame, Notre Dame.Google Scholar
  34. Kukal, O. and P. G. Kevan. 1987. The influence of parasitism on the life history of a high arctic insect, Gynaephora groenlandica (Wöcke) (Lepidoptera: Lymantriidae). Can. J. Zool. 65:156–163.CrossRefGoogle Scholar
  35. Kukal, O., B. Heinrich and J. G. Duman. 1988a. Behavioral thermoregulation in the freeze tolerant arctic caterpillar, Gynaephora groenlandica. J. Exp. Biol. 138:181–193.Google Scholar
  36. Kukal, O., A. S. Serianni, and J. G. Duman. 1988b. Glycerol metabolism in a freeze-tolerant arctic insect: An in vivo 13-C NMR study. J. Comp. Physiol. B 158:175–183.CrossRefGoogle Scholar
  37. Kukal, O., Duman, J. G. and A. S. Serianni. 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. J. Comp. Physiol. 158:661–671.Google Scholar
  38. Kukal, O. and T. E. Dawson. 1989. Temperature and food quality influences on feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia 79:526–532.CrossRefGoogle Scholar
  39. Lee, R. E., C. -P. Chen, M. H. Meacham, and D. L. Denlinger. 1987. Ontogenetic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J. Insect Physiol. 33:587–592.CrossRefGoogle Scholar
  40. MacLean, S. F. and T. S. Jensen. 1986. Food plant selection by insect herbivores in Alaskan arctic tundra: the role of plant life form. Oikos 44:211–221.CrossRefGoogle Scholar
  41. May, L. M. 1979. Insect thermoregulation. Annu. Rev. Entomol. 24:313–349.CrossRefGoogle Scholar
  42. McEvoy, P. B. 1984. Increase in respiratory rate during feeding in larvae of the cinnabar moth Tyria jacobaese. Physiol. Entomol. 9:191–195.CrossRefGoogle Scholar
  43. Meyer, S. G. E. 1980. Studies on anaerobic glucose and glutamate metabolism in larvae of Callitroga macellaria. Insect Biochem. 10:449–455.CrossRefGoogle Scholar
  44. Meyer, S. G. E. 1978. Effects of heat, cold, anaerobiosis and inhibitors on metabolite concentrations in larvae of Callitroga macellaria. Insect Biochem. 6:471–477.Google Scholar
  45. Miller, L. K. 1982. Cold-hardiness strategies of some adult and immature insects overwintering in interior Alaska. Comp. Biochem. Physiol. 73:595–604.CrossRefGoogle Scholar
  46. Montgomery, M.E. 1982. Life-cycle nitrogen budget for the gypsy moth, Lymantria dispar, reared on artificial diet. J. Insect Physiol. 28:437–442.CrossRefGoogle Scholar
  47. Price, P. W., C. E. Bouton, P. Gross, B. A. McPherson, J. N. Thompson, and A. E. Weiss. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.CrossRefGoogle Scholar
  48. Price, P. W., H. Roininen, and J. Tahvanainen. 1987a. Plant age and attack by the bud galler, Euura mucronata. Oecologia 73:334–337.CrossRefGoogle Scholar
  49. Price, P. W., H. Roininen, and J. Tahvanainen. 1987b. Why does the budgalling sawfly, Euura mucronata attack long shoots? Oecologia 74:1–6.CrossRefGoogle Scholar
  50. Regal, P. J. 1967. Voluntary hypothermia in reptiles. Science 155:1551–1553.CrossRefGoogle Scholar
  51. Rosenthal, G. A. and D. H. Janzen. 1979. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  52. Schaefer, J., K. J. Dramer, J. R. Garbow, G. S. Jacob, E. O. Stejskal, T. L. Hopkins, and R. D. Speirs. 1987. Aromatic cross-links in insect cuticle: detection by solid-state 13-C and 15-N NMR. Science 235:1200–1204.CrossRefGoogle Scholar
  53. Scholander, P. F., W. Flagg, R. J. Hoch, and L. Irving. 1953. Climatic adaptation in arctic and tropical poikilotherms. Physiol. Zool. 26:67–92.Google Scholar
  54. Scholander, P. F., W. Flagg, R. J. Hoch, and L. Irving. 1954. Studies on the physiology of frozen plants and animals in the arctic. J. Cell. Comp. Physiol. 49:1–56.CrossRefGoogle Scholar
  55. Scriber, J. M. and F. Slansky, Jr. 1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26:183–211.CrossRefGoogle Scholar
  56. Slansky, F. Jr. and J. M. Scriber. 1985. Food consumption and utilization. In Comprehensive Insect Physiology, Vol. 4, eds. G. A. Kerkut and L. I. Gilbert, pp. 87–163. Pergamon Press, Oxford.Google Scholar
  57. Sømme, L. 1974. Anaerobiosis in some alpine Coleóptera. Norsk. Entomol. Tidsskr. 21:155–158.Google Scholar
  58. Sømme, L. 1964. Effects of glycerol on cold-hardiness in insects. Can. J. Zool. 42:87–101.CrossRefGoogle Scholar
  59. Storey, K. B. 1983. Metabolism and bound water in overwintering insects. Cryobiol. 20:365–379.CrossRefGoogle Scholar
  60. Storey, K. B. and J. M. Storey. 1988. Freeze tolerance in animals. Physiol. Rev. 68:27–84.Google Scholar
  61. Storey, K. B., M. Micelli, K. W. Butler, I. C. P. Smith, and R. Deslauriers. 1984. 31-P NMR studies of the freezing tolerant larvae of the gall fly, Eurosta solidaginis. Eur. J. Biochem. 152:591–595.CrossRefGoogle Scholar
  62. Svoboda, J. and B. Freedman, eds. 1989. Ecology of a High Arctic Lowland Oasis, Alexandria Fiord (78°53’N, 75°55’W), Ellesmere Island, N.W.T., Canada. University of Toronto Press, Toronto.Google Scholar
  63. Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal Adaptations of Insects. Oxford University Press, New York.Google Scholar
  64. Tsumuki, H. and K. Kanehisa. 1981. The fate of 14-C glycerol in the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 16:200–208.Google Scholar
  65. Wyatt, G. R. and G. F. Kalf. 1958. Organic components of insect hemolymph. Proceedings of the 10th International Congress on Entomology, Vol. 2, p. 33.Google Scholar
  66. Wyatt, G. R. and W. L. Meyer. 1959. The chemistry of insect hemolymph III. Glycerol. J. Gen. Physiol. 42:1005–1011.CrossRefGoogle Scholar
  67. Yancey, P. H., M. E. Clark, S. C. Hank, R. D. Bowlus, and G. N. Somero. 1982. Living with water Stress: evolution of osmolyte systems. Science 217:1214–1222.CrossRefGoogle Scholar
  68. Yi, S., C. Yin, and J. H. Nordin. 1987. The chilling induced biosynthesis and secretion of glycerol by Ostrinia nubilalis larval fat bodies in vitro. J. Insect Physiol. 33:523–528.CrossRefGoogle Scholar
  69. Zachariassen, K. E. 1985. Physiology of cold tolerance in insects. Phys. Rev. 65:799–832.Google Scholar
  70. Zachariassen, K. E., ed. 1982. Special section: Cold-hardiness in Poikilothermic animals. Comp. Biochem. Physiol. 73:517–593.CrossRefGoogle Scholar
  71. Zachariassen, K. E. 1979. The mechanism of the cryoprotective effect of gylcerol in beetles tolerant to freezing. J. Insect Physiol. 25:29–32.CrossRefGoogle Scholar
  72. Ziegler, R. and K. Roth. 1985. 13-C NMR spectroscopy of larvae of Manduca sexta in vivo. Nature 72:206–207.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Olga Kukal

There are no affiliations available

Personalised recommendations