Freezing Tolerance in the Goldenrod Gall Fly (Eurosta solidaginis)

  • John G. Baust
  • Misako Nishino


The variety of insect species studied for cold-hardening ability has broadened to reflect the diversity found within Insecta (Sømme, 1982). One species however, has, been investigated extensively, with a comparatively large number of publications (more than 50) describing facets of its overwintering biology and many separate laboratories have at one time or another studied cold-hardening of the goldenrod gall fly, Eurosta solidaginis Fitch. Accordingly, the E. solidaginis model has allowed our base of knowledge to expand in a multidisciplinary manner.


Cold Hardiness Species Adaptation Gall Tissue Sorbitol Level Intracellular Freezing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bale, J. S., T. N. Hansen, and J. G. Baust. 1989. Nucleators and sites of nucleation in the freeze tolerant larvae of the gallfly Eurosta solidaginis (Fitch). J. Insect Physiol. 35:291–298.CrossRefGoogle Scholar
  2. Baust, J. G. 1982. Environmental triggers to cold hardening. Comp. Biochem. Physiol. 73:563–570.CrossRefGoogle Scholar
  3. Baust, J. G. 1983. Protective agents: regulation of synthesis. Cryobiol. 20:357–364.CrossRefGoogle Scholar
  4. Baust, J. G. 1986. Insect cold hardiness: freezing tolerance and avoidance-the Eurosta model: In Living in the Cold: Physiological and Biochemical Adaptations, eds. H. C. Heller, X. J. Musacchia and L. Wang, pp. 125–130. Elsevier, New York.Google Scholar
  5. Baust, J. G. and L. K. Miller. 1970. Seasonal variations in glycerol content and its influence on cold hardiness in the Alaskan carabid beetle, Pterostichus brevicornis. J. Insect Physiol. 16:979–990.CrossRefGoogle Scholar
  6. Baust, J. G. and L. K. Miller. 1972. Influence of low temperature acclimation on cold hardiness in Pterostichus brevicornis. J. Insect Physiol. 18:1935–1947.CrossRefGoogle Scholar
  7. Baust, J. G., A. Grandee, G. Condon, and R. E. Morrissey. 1979. The diversity of overwintering strategies utilized by separate populations of gall insects. Physiol. Zool. 52:572–580.Google Scholar
  8. Fahy, G. M. 1986. The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiol. 23:1–13.CrossRefGoogle Scholar
  9. Finegold, L. X., F. Franks, and R. H. M. Hatley. 1989. Carbohydrate crystals and glass mixtures: Glass temperatures and specific heats. Proc. Am. Chem. Soc. 89:49.Google Scholar
  10. Franks, F. 1985. Biophysics and Biochemistry at Low Temperatures, p. 210. Cambridge University Press, Cambridge.Google Scholar
  11. Frusic, M. and J. G. Baust. 1989. Seasonal differences in the effect of temperature on cryoprotectant profiles in Eurosta solidaginis (Fitch) larvae. Cryobiol. 26:549–550.CrossRefGoogle Scholar
  12. Hamilton, M., R. R. Rojas, and J. G. Baust. 1986. Juvenile hormone modulation of cryoprotectant synthesis in Eurosta solidaginis by a component of the endocrine system. J. Insect Physiol. 32:971–980.CrossRefGoogle Scholar
  13. Lee, R. E. Jr., K. E. Zachariassen, and J. G. Baust. 1981. Effect of cryoprotectants on the activity of hemolymph nucleating agents in physical solutions. Cryobiol. 18:511–514.CrossRefGoogle Scholar
  14. Lozina-Lozinskii, L. K. 1967. The resisting of insects to deep cooling and intracellular freezing. In The Cell and Environmental Temperature, pp. 90–97. eds. A. S. Trosin and C. L. Presser, Proc. Int. Symp. Cytol. Pergamon Press, New York.Google Scholar
  15. Luyet, B. and D. H. Rasmussen. 1968. Study by differential thermal analysis of the temperature of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose and glucose. Biodynamica 10:167–191.Google Scholar
  16. Luyet, B. and D. H. Rasmussen. 1973. On some conspicuous changes occurring in aqueous systems subjected to below zero °C temperatures. Biodynamica 11:209–215.Google Scholar
  17. Morrissey, R. and J. G. Baust. 1976. The ontogeny of cold tolerance in the gall fly, Eurosta solidaginis. J. Insect Physiol. 22:431–438.CrossRefGoogle Scholar
  18. Pio, C. J. and J. G. Baust. 1988a. Effects of temperature cycling on cryoprotectant profiles in the goldenrod gall fly, Eurosta solidaginis (Fitch). J. Insect Physiol. 34:767–771.CrossRefGoogle Scholar
  19. Pio, C. J. and J. G. Baust. 1988b. Trigger sensitivity of cryoprotectant synthesis in Eurosta solidaginis (Fitch). Cryo-Lett. 9:152–169.Google Scholar
  20. Reid, D. S. 1979. The low temperature phase behavior of aqueous ribose. Cryo-Lett. 1:35–38.Google Scholar
  21. Rojas, R. R. 1986. Control of cold-hardening in the freeze tolerant gall fly larva, Eurosta solidaginis (Fitch) (Tephritidae). PhD thesis. University of Houston, Texas.Google Scholar
  22. Rojas, R. R., R. E. Lee, Jr., and J. G. Baust. 1986. Relationship of environmental water content to glycerol accumulation in the freezing tolerant larvae of Eurosta solidaginis (Fitch). Cryo-Lett. 7:234–245.Google Scholar
  23. Rojas, R. R., R. E. Lee, Jr., T. Luu, and J. G. Baust. 1983. Temperature dependence-independence of antifreeze turnover in Eurosta solidaginis (Fitch). J. Insect Physiol. 19:865–869.CrossRefGoogle Scholar
  24. Salt, R. W. 1957. Natural occurrence of glycerol in insects and its relation to their ability to survive freezing. Can. Entomol. 89:491–494.CrossRefGoogle Scholar
  25. Salt, R. W. 1959. Survival of frozen fat body cells in an insect. Nature 184:1426.CrossRefGoogle Scholar
  26. Salt, R. W. 1962. Intracellular freezing in insects. Nature 193:1207–1208.CrossRefGoogle Scholar
  27. Sømme, L. 1978. Nucleating agents in the haemolymph of third instar larvae of Eurosta solidaginis (Fitch) (Dipt., Tephritidae). Norw. J. Entomol. 24:187–188.Google Scholar
  28. Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. 73:519–543.CrossRefGoogle Scholar
  29. Storey, K. B. and J. M. Storey. 1988. Freeze tolerance in animals. Physiol. Rev. 68:27–84.Google Scholar
  30. Storey, K. B., J. G. Baust, and P. Beuscher. 1981. Determination of water “bound” by soluble subcellular components during low temperature acclimation in the gall larvae, Eurosta solidaginis. Cryobiol. 18:315–321.CrossRefGoogle Scholar
  31. Uhler, L. D. 1951. Biology and ecology of the goldenrod gall fly, Eurosta solidaginis (Fitch). Cornell University Agriculture and Experimentary Statistical Memo. No. 300, pp. 1–51.Google Scholar
  32. Wasylyk, J. M. and J. G. Baust. 1989. Multiple vitreous domains in an aqueous ribose solution. Proc. Am. Chem. Soc. 89:50.Google Scholar
  33. Wasylyk, J. M., A. R. Rice, and J. B. Baust. 1988. Partial glass formation: A novel mechanism of insect cryoprotection. Cryobiol. 25:451–458.CrossRefGoogle Scholar
  34. Zachariassen, K. E., J. G. Baust, and R. E. Lee, Jr. 1982. A method for the quantitative determination of ice nucleating agents in insect hemolymph. Cryobiol. 19:180–184.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • John G. Baust
  • Misako Nishino

There are no affiliations available

Personalised recommendations