Advertisement

Are Exotic Consequences of Incommensurability in Solids Experimentally Observable?

  • J. B. Sokoloff
Part of the NATO ASI Series book series (NSSB, volume 166)

Abstract

The exotic transport properties expected for incommensurate crystals, due to the fragmented nature of their energy bands, are shown to be usually unobservable because of intrinsic defects in the crystal structure and the usually weak nature of the modulation potential. Two systems for which they might be observable, however, are some artificially grown superlattices and quasi-crystals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Simon, Advances in Applied Mathematics 3, 463 (1982); J. B. Sokoloff, Physics Reports 126, 189 (1985).MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Ostlund and R. Pandit, Phys. Rev. B29, 1394 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    J. M. Ziman, “Principles of the Theory of Solids”, 2nd ed. (Cambridge University Press, Cambridge, 1972), pp. 190–196.CrossRefGoogle Scholar
  4. 4.
    M. Kohmoto, L. P. Kadanoff and C. Tang, Phys. Rev. Lett. 50, 1870 (1983).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Abromowitz and I. A. Stagun (New York: Dover, 1965).Google Scholar
  6. 6.
    V. Elser, Phys. Rev. Lett. 54, 1730 (1985).ADSCrossRefGoogle Scholar
  7. 6a.
    R. Merlin, K. Bajema, R. Clarke, F. Y. Juang and P. K. Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985); R. Clarke, this volume.ADSCrossRefGoogle Scholar
  8. 7.
    D. Schechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984); R. D. Field and H. L. Fraser, Mat. Sc. and Eng. 68, L17 (1984).ADSCrossRefGoogle Scholar
  9. 8.
    D. Levine and, P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).ADSCrossRefGoogle Scholar
  10. 9.
    V. Elser, Phys. Rev. B32, 4892 (1985); M. Duneau and A. Katz, Phys. Rev. Lett. 54, 2688 (1985).ADSCrossRefGoogle Scholar
  11. 10.
    S. J. Poon, A. J. Drehman, K. R. Lawless, Phys. Rev. Lett. 55, 2324 (1985); M. J. Burns, A. Behrooz, X. Yan, P. M. Chaikin, P. Bancel and P. Heiney, Bull. Am. Phys. Soc. 31, 268 (1985); D. Pavuna, C. Berger, F. Cyrot-Lackmann, P. Germi and A. Pasturel, Solid State Comm. 59, 11 (1986); J.-L. Verger-Gaugry and P. Gyyot, J. de Physique (colloques) (in press); R. Markiewicz (unpublished).ADSCrossRefGoogle Scholar
  12. 11.
    G. Busch and H. J. Gunthrodt, “Solid State Physics”, eds. H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press, New York, 1974), p. 235.Google Scholar
  13. 12.
    M. Lax, Rev. Mod. Phys. 23, 287 (1951), see particularly p. 30.ADSMathSciNetCrossRefGoogle Scholar
  14. 13.
    R. K. P. Zia and W. J. Dallas, J. Phys. A18, L341 (1985).ADSGoogle Scholar
  15. 14.
    A. Messiah, “Quantum Mechanics” (Wiley and sons, New York, 1961).MATHGoogle Scholar
  16. 15.
    J. Avron and B. Simon, Phys. Rev. Lett. 46, 1166 (1981).ADSMathSciNetCrossRefGoogle Scholar
  17. 16.
    M. Ya Azbel, P. Bak, P. M. Chaikin, Physics Letters A117, 92 (1986); Phys. Rev. A34, 1392 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. B. Sokoloff
    • 1
  1. 1.Physics DepartmentNortheastern UniversityBostonUSA

Personalised recommendations