Are Exotic Consequences of Incommensurability in Solids Experimentally Observable?

  • J. B. Sokoloff
Part of the NATO ASI Series book series (NSSB, volume 166)


The exotic transport properties expected for incommensurate crystals, due to the fragmented nature of their energy bands, are shown to be usually unobservable because of intrinsic defects in the crystal structure and the usually weak nature of the modulation potential. Two systems for which they might be observable, however, are some artificially grown superlattices and quasi-crystals.


Fermi Surface Bragg Peak Tight Binding Model Total Scattering Cross Section Incommensurate Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Simon, Advances in Applied Mathematics 3, 463 (1982); J. B. Sokoloff, Physics Reports 126, 189 (1985).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    S. Ostlund and R. Pandit, Phys. Rev. B29, 1394 (1984).MathSciNetADSGoogle Scholar
  3. 3.
    J. M. Ziman, “Principles of the Theory of Solids”, 2nd ed. (Cambridge University Press, Cambridge, 1972), pp. 190–196.Google Scholar
  4. 4.
    M. Kohmoto, L. P. Kadanoff and C. Tang, Phys. Rev. Lett. 50, 1870 (1983).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M. Abromowitz and I. A. Stagun (New York: Dover, 1965).Google Scholar
  6. 6.
    V. Elser, Phys. Rev. Lett. 54, 1730 (1985).ADSCrossRefGoogle Scholar
  7. 6a.
    R. Merlin, K. Bajema, R. Clarke, F. Y. Juang and P. K. Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985); R. Clarke, this volume.ADSCrossRefGoogle Scholar
  8. 7.
    D. Schechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984); R. D. Field and H. L. Fraser, Mat. Sc. and Eng. 68, L17 (1984).ADSCrossRefGoogle Scholar
  9. 8.
    D. Levine and, P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).ADSCrossRefGoogle Scholar
  10. 9.
    V. Elser, Phys. Rev. B32, 4892 (1985); M. Duneau and A. Katz, Phys. Rev. Lett. 54, 2688 (1985).ADSGoogle Scholar
  11. 10.
    S. J. Poon, A. J. Drehman, K. R. Lawless, Phys. Rev. Lett. 55, 2324 (1985); M. J. Burns, A. Behrooz, X. Yan, P. M. Chaikin, P. Bancel and P. Heiney, Bull. Am. Phys. Soc. 31, 268 (1985); D. Pavuna, C. Berger, F. Cyrot-Lackmann, P. Germi and A. Pasturel, Solid State Comm. 59, 11 (1986); J.-L. Verger-Gaugry and P. Gyyot, J. de Physique (colloques) (in press); R. Markiewicz (unpublished).ADSCrossRefGoogle Scholar
  12. 11.
    G. Busch and H. J. Gunthrodt, “Solid State Physics”, eds. H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press, New York, 1974), p. 235.Google Scholar
  13. 12.
    M. Lax, Rev. Mod. Phys. 23, 287 (1951), see particularly p. 30.MathSciNetADSMATHCrossRefGoogle Scholar
  14. 13.
    R. K. P. Zia and W. J. Dallas, J. Phys. A18, L341 (1985).ADSGoogle Scholar
  15. 14.
    A. Messiah, “Quantum Mechanics” (Wiley and sons, New York, 1961).Google Scholar
  16. 15.
    J. Avron and B. Simon, Phys. Rev. Lett. 46, 1166 (1981).MathSciNetADSCrossRefGoogle Scholar
  17. 16.
    M. Ya Azbel, P. Bak, P. M. Chaikin, Physics Letters A117, 92 (1986); Phys. Rev. A34, 1392 (1986).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. B. Sokoloff
    • 1
  1. 1.Physics DepartmentNortheastern UniversityBostonUSA

Personalised recommendations