Artificially Structured Incommensurate Materials

  • Roy Clarke
  • R. Merlin
Part of the NATO ASI Series book series (NSSB, volume 166)


Modern ultrahigh vacuum deposition techniques such as Molecular Beam Epitaxy offer interesting opportunities for the fabrication of materials in which the incommensurate nature of the structure is expected to dominate the physical properties. We have recently demonstrated the MBE growth of heterostructures in which layers of GaAs and AlAs were deposited in a Fibonacci sequence. This yields a quasi-periodic structure with the ratio of incommensurate periods equal to the golden mean, τ. Here we present an overview of the unique structural, electronic, and vibrational properties of this new class of materials emphasizing the role of the incommensurate structure normal to the layers. Inevitably, defects are introduced by growth fluctuations but do not appear to disrupt significantly the special characteristics which originate from the quasiperiodic ordering.


Molecular Beam Epitaxy Vibrational Property Fibonacci Sequence Incommensurate Structure Quasiperiodic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Merlin, K. Bajema, R. Clarke, F.-Y Juang and P. K. Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    J. B. Sokoloff (see these proceedings).Google Scholar
  3. 3.
    J. B. Sokoloff, Phys. Rev. B22, 5823 (1980); S. Das Sarma, A. Kobayashi and R. E. Prange, Phys. Rev. Lett. 56, 1280 (1986).ADSGoogle Scholar
  4. 4.
    See, e.g., S. Ostlund and R. Pandit, Phys. Rev. B29, 1394 (1984).MathSciNetADSGoogle Scholar
  5. 5.
    J. Todd, R. Merlin, R. Clarke, K. M. Mohanty and J. D. Axe, to be published.Google Scholar
  6. 6.
    K. Bajema and R. Merlin, to be published.Google Scholar
  7. 7.
    J. P. Lu, T. Odagaki and J. L. Birman, Phys. Rev. B33, 4809 (1986).ADSGoogle Scholar
  8. 8.
    T. Odagaki and L. Friedman, Solid State Commun. 57, 915 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    F. Nori and J. P. Rodriguez, to be published.Google Scholar
  10. 10.
    M. Kohmoto and J. R. Banavar, to be published; see also M. Kohmoto, Phys. Rev. Lett. 51, 1198 (1983).Google Scholar
  11. 11.
    V. Elser, Acta Cryst. A42, 36 (1986).MathSciNetGoogle Scholar
  12. 12.
    R. K. P. Zia and W. J. Dallas, J. Phys. A18, L341 (1985).ADSGoogle Scholar
  13. 13.
    P. M. Horn, W. Malzfeldt, D. P. DiVincenzo, J. Toner and R. Gambino, Phys. Rev. Lett. 57, 1444 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    See, e.g., C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, R. Fischer, H. Morkoc and A. C. Gossard, Phys. Rev. B31, 2080 (1985).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Roy Clarke
    • 1
  • R. Merlin
    • 1
  1. 1.Department of PhysicsThe University of MichiganAnn ArborUSA

Personalised recommendations