Advertisement

Elastic and Inelastic Scattering from Quasi-Periodic Structures

  • T. Janssen
  • R. Currat
Part of the NATO ASI Series book series (NSSB, volume 166)

Abstract

Elastic and inelastic scattering from incommensurate crystal phases, nowadays sometimes called quasi-periodic structures, is discussed both from a theoretical and an experimental point of view. The excitations of these structures are treated in the harmonic approximation in the framework of higher-dimensional space groups. Expressions are given for the static structure factor, the differential scattering cross section and for the Debye-Waller factors. The results are exemplified on a simple model, the DIFFFOUR model, and illustrated with experiments with neutrons on incommensurate phases of ThBr4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bak, Phys. Rev. Lett. 54, 1517–1519 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    M. Duneau and A. Katz, Phys. Rev. Lett. 54, 2688–2691 (1985).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    V. Elser, Phys. Rev. B. 32, 4892–4898 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    P. Bak, Phys. Rev. B. 32, 5764–5772 (1985).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Janssen, in Proceedings Phonon Conference Budapest, 1985 (World Scientific Publ., Singapore, 1985), 260–265.Google Scholar
  6. 6.
    A. Katz and M. Duneau, J. Physique 47, 181–196 (1986).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Elser, Acta Cryst. A 42, 36–43 (1986).CrossRefGoogle Scholar
  8. 8.
    T. Janssen, Acta Cryst. A 42 H 261–271 (1986).CrossRefGoogle Scholar
  9. 9.
    P. M. de Wolf, Acta Cryst. A 33, 493–497 (1977).CrossRefGoogle Scholar
  10. 10.
    A. Yamamoto, Acta Cryst. A 38, 87–92 (1982).CrossRefGoogle Scholar
  11. 11.
    S. Hendricks and E. Teller, J. Chem. Phys. 10, 147–167 (1942).ADSCrossRefGoogle Scholar
  12. 12.
    J. D. Ade, M. Iizumi, and G. Shirane, Phys. Rev. B 22, 3408–3413 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    M. B. Walker, Can. J. Phys. 56, 127–138 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    T. Janssen J. Phys. C 12, 5381–5392 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    T. Janssen and C. de Lange, Journal de Physique C 6, 737–739 (1981).Google Scholar
  16. 16.
    T. Janssen and J. A. Tjon, Phys. Rev. B 25, 3767–3785 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    T. Janssen, Jap. J. Appl. Phys.; Supplement 24-2 24, 747–749 (1985).CrossRefGoogle Scholar
  18. 18.
    W. Marshall and S. W. Lovesey, Theory of Thermal Neutron Scattering (Clarendon Press, Oxford, 1971).Google Scholar
  19. 19.
    A. W. Overhauser, Phys. Rev. B 3, 3173–3182 (1971).ADSCrossRefGoogle Scholar
  20. 20.
    J. D. Axe, Phys. Rev. B 21, 4181–4190 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    W. Adlhart, Acta Cryst. 38, 498–504 (1982).CrossRefGoogle Scholar
  22. 22.
    M. Jaric, J. de Physique Colloques H C3, 259–270 (1986).Google Scholar
  23. 23.
    H. Cailleau, J. C. Messager, F. Moussa, F. Bugaut, C. M. E. Zeyen and C. Vettier, Ferroelectrics 67, 3–14 (1986).CrossRefGoogle Scholar
  24. 24.
    L. Bernard, R. Currat, P. Delamoye, C. M. E. Zeyen, S. Hubert and R. de Kouchkovsky, J. Phys. C. Solid State Phys. 16, 433–456 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    R. Currat, L. Bernard, and P. Delamoye, in Incommensurate Phases in Dielectrics 2, R. Blinc and A. P. Evanyuk (eds.) (North-Holland, Amsterdam, 1986), 162–204.Google Scholar
  26. 26.
    M. Quilichini and R. Currat, Sol. State Comm. 48, 1011–1015 (1983).ADSCrossRefGoogle Scholar
  27. 27.
    V. A. Golovko and A. P. Levanyuk, in Light Scattering Near Phase Transitions, H. Z. Cummins and A. P. Levanyuk (eds.) (North-Holland, Amsterdam, 1983), 169–226.CrossRefGoogle Scholar
  28. 28.
    S. Hubert, P. Delamoye, S. Lefrant, M. Lepostollec and M. Hussonnois, J. Sol. St. Chem. 36, 36–44 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • T. Janssen
    • 1
  • R. Currat
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Institut Max von Laue-Paul LangevinGrenoble CedexFrance

Personalised recommendations