Skip to main content

Macroscopic Variables in Commensurate and Incommensurate Condensed Phases, Quasicrystals and Phasmids

  • Chapter
Incommensurate Crystals, Liquid Crystals, and Quasi-Crystals

Part of the book series: NATO ASI Series ((NSSB,volume 166))

Abstract

Macroscopic variables, necessary for a useful dynamical description of many condensed phases, are discussed. The nature of these macroscopic variables, their origin and their implications for the dynamics are considered. The somewhat special case of phasmids is treated separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Landau and E. M. Lifshitz, “Fluid Mechanics” (Pergamon, London), 1959.

    MATH  Google Scholar 

  2. L. P. Kadanoff and P. C. Martin, Ann. Phys. 24, 419 (1963).

    Article  ADS  Google Scholar 

  3. P. Hohenberg and P. C. Martin, Ann. Phys. 34, 291 (1965).

    Article  ADS  Google Scholar 

  4. I. M. Khalatnikov, “Introduction to the Theory of Superfluidity” (Benjamin, New York, 1965).

    Google Scholar 

  5. B. I. Halperin and P. Hohenberg, Phys. Rev. 188, 898 (1968).

    Article  ADS  Google Scholar 

  6. R. Graham, Phys. Rev. Lett. 23, 1431 (1974).

    Article  ADS  Google Scholar 

  7. R. Graham and H. Pleiner, Phys. Rev. Lett. 24, 792 (1975).

    Article  ADS  Google Scholar 

  8. R. Graham and H. Pleiner, J. Phys. C9, 279 (1976).

    ADS  Google Scholar 

  9. M. Liu,. Phys. Rev. Lett. 43, 1740 (1979).

    Article  ADS  Google Scholar 

  10. P. C. Martin, O. Parodi and P. S. Pershan, Phys. Rev. A6, 2401 (1972).

    Article  ADS  Google Scholar 

  11. D. Forster, Ann. Phys. 84, 505 (1974).

    Article  ADS  Google Scholar 

  12. T. C. Lubensky, Phys. Rev. A6, 452 (1972).

    Article  ADS  Google Scholar 

  13. H. Brand and H. Pleiner, J. Physique 41, 553 (1980).

    Article  MathSciNet  Google Scholar 

  14. H. Pleiner and H. Brand, J. Physique Lett. 41, L491 (1980).

    Article  Google Scholar 

  15. H. Brand and H. Pleiner, Phys. Rev. A24, 2777 (1981).

    Article  ADS  Google Scholar 

  16. H. Pleiner and H. Brand, Phys. Rev. A25, 995 (1982).

    Article  ADS  Google Scholar 

  17. H. Brand and H. Pleiner, J. Physique 45, 563 (1984).

    Article  Google Scholar 

  18. H. Pleiner and H. R. Brand, Phys. Rev. A29, 911 (1984).

    Article  ADS  Google Scholar 

  19. Except the angular momentum density, which is dynamically not an independent variable (cf. Ref. 10).

    Google Scholar 

  20. Except when long-ranged forces are present.

    Google Scholar 

  21. D. Forster, “Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions” (Benjamin, Reading, 1975).

    Google Scholar 

  22. F. Jähnig and H. Schmidt, Ann. Phys. 71, 129 (1972).

    Article  ADS  Google Scholar 

  23. W. L. McMillan, Phys. Rev. A9, 1720 (1974).

    Article  ADS  Google Scholar 

  24. J. Swift, Phys. Rev. A13, 2274 (1976).

    Article  ADS  Google Scholar 

  25. M. Liu, Phys. Rev. A19, 2090 (1979).

    Article  ADS  Google Scholar 

  26. B. Julia, and G. Toulouse, J. Physique Lett. 40, L395 (1979).

    Article  Google Scholar 

  27. I. E. Dzyaloshinskii and G. E. Volovik, Ann Phys. 125, 67 (1980).

    Article  ADS  Google Scholar 

  28. K. Kawasaki, Ann. Phys. 154, 319 (1984).

    Article  ADS  Google Scholar 

  29. H. R. Brand and K. Kawasaki, J. Phys. A17, L905 (1984).

    ADS  Google Scholar 

  30. Usually rotational symmetry; but if a field is modulated in space, it also breaks translational symmetry.

    Google Scholar 

  31. P. G. de Gennes, “The Physics of Liquid Crystals” (Clarendon, Oxford, 1974).

    MATH  Google Scholar 

  32. H. Pleiner, J. Phys. C10, 4241 (1977).

    ADS  Google Scholar 

  33. D. R. Nelson and B. I. Halperin, Phys. Rev. B21, 5312 (1980).

    Article  ADS  Google Scholar 

  34. R. Pindak, D. E. Moncton, S. C. Davey and J. W. Goodby, Phys. Rev. Lett. 46, 1135 (1981).

    Article  ADS  Google Scholar 

  35. J. J. Benattar, F. Moussa and M. Lambert, J. Chim. Phys. 80, 99 (1983).

    Article  Google Scholar 

  36. J. D. Brock, A. Aharony, R. J. Birgeneau, K. W. Evans-Lutterodt, J. D. Litster, P. M. Horn, G. B. Stephenson and A. R. Tajbakhsh, Phys. Rev. Lett. 57, 98 (1986).

    Article  ADS  Google Scholar 

  37. H. Pleiner, Mol. Cryst. Liq. Cryst. 114, 103 (1984).

    Article  Google Scholar 

  38. H. Pleiner and H. R. Brand, Phys. Rev. A29, 911 (1984).

    Article  ADS  Google Scholar 

  39. This definition is not restricted to translational broken symmetries.

    Google Scholar 

  40. Except near the smectic A-nematic phase transition (ref. 25).

    Google Scholar 

  41. J. Prost in “Liquid Crystals of One- and Two-Dimensional Order,” W. Helfrich and G. Heppke, eds. (Springer, Berlin, 1980), p. 125.

    Chapter  Google Scholar 

  42. This definition avoids the physically somewhat unsatisfactory distinction between rational and irrational numbers; on the other hand, it may be difficult to distinguish between no interaction and extremely small interaction.

    Google Scholar 

  43. J. Prost and P. Barois, J. Chim Phys. 80, 65 (1983).

    Article  Google Scholar 

  44. H. R. Brand and H. Pleiner (to be published).

    Google Scholar 

  45. H. Brand and P. Bak, Phys. Rev. A27, 1062 (1983).

    Article  ADS  Google Scholar 

  46. In that case, I would call these systems commensurate.

    Google Scholar 

  47. The real and imaginary parts of the dispersion relation vanish with equal power of the wave vector.

    Google Scholar 

  48. The masses of the different atomic species are different.

    Google Scholar 

  49. J. D. Axe and P. Bak, Phys. Rev. B26, 4963 (1982).

    Article  ADS  Google Scholar 

  50. D. Schechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  ADS  Google Scholar 

  51. P. Bak, Phys. Rev. Lett. 54, 1517 (1985).

    Article  ADS  Google Scholar 

  52. T. C. Lubensky, S. Ostlund, S. Ramaswamy, P. J. Steinhardt, and J. Toner, Phys. Rev. Lett. 54, 1520 (1985).

    Article  ADS  Google Scholar 

  53. N. D. Mermin and S. M. Troian, Phys. Rev. Lett. 54, 1524 (1985).

    Article  ADS  Google Scholar 

  54. M. Kleman, Y. Gefen and Y. Pavlovitch, Europhys. Lett. 1, 61 (1986).

    Article  ADS  Google Scholar 

  55. The latter is proposed in T. Janssen, these proceedings.

    Google Scholar 

  56. J. Malthete, A. M. Levelut and Nguyen Hu Tinh, J. Physique Lett. 46, L876 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Pleiner, H. (1987). Macroscopic Variables in Commensurate and Incommensurate Condensed Phases, Quasicrystals and Phasmids. In: Scott, J.F., Clark, N.A. (eds) Incommensurate Crystals, Liquid Crystals, and Quasi-Crystals. NATO ASI Series, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-0184-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0184-5_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-0186-9

  • Online ISBN: 978-1-4757-0184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics