On the Molecular Theory of Smectic-A Liquid Crystals

  • W. H. de Jeu
Part of the NATO ASI Series book series (NSSB, volume 166)


The intermolecular interactions leading to the various types of smectic-A phase are considered both for effectively symmetric and for asymmetric molecules. At least a qualitative understanding of the molecular organization in the various phases can be obtained by combining the tendency of aromatic and aliphatic parts to segregate with optimal packing and minimal dipolar repulsions. In particular, it is shown that probably two rather different ways of molecular ordering may lead to a smectic-A phase with a period approximately equal to the molecular length.


Nematic Phase Optimal Packing Smectic Phase Molecular Length Aromatic Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. de Gennes, Solid State Commun. 10, 753 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    R. B. Meyer and T. G. Lubensky, Phys. Rev. A14, 2307 (1975).ADSGoogle Scholar
  3. 3.
    W. L. McMillan, Phys. Rev. A4, 1238 (1971).ADSGoogle Scholar
  4. 4.
    D. Demus, H. Demus, and H. Zaschke, “Flussige Kristalle in Tabellen,” 2nd ed. (VEB Verlag, Leipzig, 1983).Google Scholar
  5. 5.
    G. J. Brownsey and A. J. Leadbetter, Phys. Rev. Lett. 44, 1608 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    B. M. Ocko, R. J. Birgeneau, and J. D. Litster, Z. Phys. B62, 487 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    L. G. P. Dalmolen, S. J. Picken, A. F. de Jong, and W. H. de Jeu, J. Phys. 46, 1443 (1985).CrossRefGoogle Scholar
  8. 8.
    L. Longa and W. H. de Jeu, Phys. Rev. A26, 1632 (1982).ADSGoogle Scholar
  9. 9.
    P. E. Cladis, R. K. Bogardus, and D. Aadsen, Phys. Rev. A18, 2292 (1978).ADSGoogle Scholar
  10. 10.
    F. Dowell, Phys. Rev. A31, 2464 (1985).ADSGoogle Scholar
  11. 11.
    A. N. Berker and J. S. Walker, Phys. Rev. Lett. 47, 1469 (1981); J. O. Indekeu and A. N. Berker, Phys. Rev. A33, 1158 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    L. Longa and W. H. de Jeu, Phys. Rev. A28, 2380 (1983).ADSGoogle Scholar
  13. 13.
    C. Druon, J. M. Wacrenier, F. Hardouin, Nguyen Huu Tinh, and H. Gasparoux, J. Phys. 44, 1195 (1983).CrossRefGoogle Scholar
  14. 14.
    J. Prost and P. Barois, J. Chim. Phys. 80, 65 (1983).Google Scholar
  15. 15.
    B. R. Ratna, R. Shashidar, and V. N. Raja, Phys. Rev. Lett. 55, 1476 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    A. M. Levelut, J. Phys. Lett. 45, L–603 (1984); P. E. Cladis, private communication.CrossRefGoogle Scholar
  17. 17.
    E. F. Gramsbergen, W. H. de Jeu, and J. Als-Nielsen, J. Phys. 47, 711 (1986).CrossRefGoogle Scholar
  18. 18.
    R. J. Birgeneau, 11th International Liquid Crystal Conference (Berkeley, 1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • W. H. de Jeu
    • 1
    • 2
  1. 1.FOM-Institute for Atomic and Molecular PhysicsAmsterdamNetherlan
  2. 2.The Open UniversityHeerlenNetherlands

Personalised recommendations