Phasons in Quasi-Crystals and Incommensurate Liquid Crystals

  • T. C. Lubensky
Part of the NATO ASI Series book series (NSSB, volume 166)

Abstract

Phason elasticity and hydrodynamics for incommensurate liquid crystals and icosahedral quasi-crystals are derived under the assumption that the free energy is analytic in the gradient of the relative phase, w, of incommensurate density waves. The phason mode is always diffusive in the hydrodynamic limit, but the diffusion constant for quasi-crystals is small. In strongly coupled incommensurate systems, the free energy can be non-analytic in \( % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafy4bIeTbaS % aacaWG3baaaa!3861! \vec \nabla w \), leading to a breakdown of elasticity and hydrodynamics. The phason mode is pinned. For both types of phason dynamics non-uniform spatial distortions of w can easily be quenched into icosahedral quasicrystals. Evidence for quenched phason strains in these materials will be discussed.

Keywords

Mercury Soliton Exter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Schechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984); Phys. Rev. B (1986) (to be published).ADSCrossRefGoogle Scholar
  3. 3.
    Peter A. Bancel and Paul A. Heiney, Phys. Rev. B33, 7917 (1986).ADSGoogle Scholar
  4. 4.
    S. J. Poon, A. J. Drehman, and K. R. Lawless, Phys. Rev. Lett. 55, 2324 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    L. Bendersky, Phys. Rev. Lett. 55, 1461 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    J. E. S. Socolar, P. J. Steinhardt, and D. Levine, Phys. Rev. B32, 5547 (1985); F. Gahler and J. Rhyner, J. Math Phys. A19, 267 (1986).ADSGoogle Scholar
  7. 7.
    See, for example, P. Bak, Rep. Prog. Phys. 45, 587 (1981); V. L. Pokrovsky and A. L. Talopov, “Theory of Incommensurate Crystals,” Sov. Science Review (Horwood Acad. Pub., Switzerland, 1983).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    D. Levine, T. C. Lubensky, S. Ostlund, S. Ramaswamy, P. J. Steinhardt, and J. Toner, Phys. Rev. Lett. 54, 1520 (1985); P. Bak, Phys. Rev. Lett. 54, 1517 (1985); Phys. Rev. B32, 5764 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    P. A. Kalugin, A. Yu Kitayev, and L. S. Levitov, Pis’ma Zh. Eksp. Teor. Fiz. 41, 119 (1985) [Soviet Phys. JETP 41, 119 (1985)]; J. Phys. Lett. (Paris) 46, L-601 (1985).Google Scholar
  10. 10.
    T. C. Lubensky, Sriram Ramaswamy, and J. Toner, Phys. Rev. B32, 7444 (1985).ADSGoogle Scholar
  11. 11.
    Joshua E. S. Socolar, T. C. Lubensky, and Paul J. Steinhardt, to be published in Physl. Rev. B.Google Scholar
  12. 12.
    R. Ratna, S. Shashidhar, and V. N. Raja, Phys. Rev. Lett. 55, 1476 (1985); R. Ratna and S. Shashidhar, this volume.ADSCrossRefGoogle Scholar
  13. 13.
    P. Barois, Phys. Rev. A33, 3632 (1986); Jiang Wang (unpublished thesis, University of Pennsylvania, 1985).ADSGoogle Scholar
  14. 14.
    T. C. Lubensky, S. Ramaswamy, and J. Toner (unpublished).Google Scholar
  15. 15.
    Y. I. Frenkel and T. Kontorowa, Zh. Eksp. Teor. Fiz. 8, 1340 (1938).Google Scholar
  16. 16.
    S. Aubry, in “Solitons in Condensed Matter Physics,” Vol. 8 of Springer Series in Solid State Physics, edited by A. Bishop and T. Schneider (Springer, Berlin, 1978), p. 264; M. Peyrard and S. Aubry, J. Phys. C7, 1593 (1983).Google Scholar
  17. 17.
    D. Frenkel, C. L. Henley, and E. D. Siggia, Phys. Rev B34, 3649 (1986).ADSGoogle Scholar
  18. 18.
    T. C. Lubensky, Joshua E. S. Socolar, Paul. J. Steinhardt, Peter A. Bancel, and Paul A. Heiney, Phys. Rev. Le H. 57, 1440 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    P. M. Horn, W. Malzfeldt, D. P. DiVincenzo, J. Toner, and R. Gambino, Phys. Rev. Lett. 57, 1444 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    M. Tanaka, M. Terauchi, K. Hiraga, and M. Hirabayashi, Ultramicroscopy 17, 279 (1985).CrossRefGoogle Scholar
  21. 21.
    P. Bancel, P. A. Heiney, P. W. Stephens, A. I. Goldman, and P. M. Horn, Phys. Rev. Lett. 54, 2422 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    K. Hiraga, M. Hirabayashi, A. Inoue, and T. Masumoto, Sci. Rep. RITU, A32, No. 2, 209 (1985).Google Scholar
  23. 23.
    See, for example, P. G. De Gennes, “The Physics of Liquid Crystals” (Clarendon, Oxford, 1974).Google Scholar
  24. 24.
    V. Elser, Acta Cryst. A42, 36 (1986); M. Duneau and A. Katz, Phys. Rev. Lett. 54, 2688 (1985); A. Katz, this volume.MathSciNetGoogle Scholar
  25. 25.
    P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev. A6, 2401 (1972); D. Forster, “Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions” (Benjamin, Reading, MA, 1975).ADSGoogle Scholar
  26. 26.
    J. P. Pouget, G. Shirane, J. M. Hastings, A. J. Heeger, N. D. Miro, and A. G. MacDiarmid, Phys. Rev. B18, 3465 (1978); See also references in Ref. 10.Google Scholar
  27. 27.
    R. Penrose, Bull. Inst. Math. and Its Appl. 10, 266 (1974); M. Gardner, Sci. Am. 236, 110 (1977).Google Scholar
  28. 28.
    S. Pantelides, private communications; see also Ref. 10.Google Scholar
  29. 29.
    See for example Ref. 1 or B. Grunbaum and G. C. Shepard, “Tilings and Patterns” (Freeman, San Francisco), to be published.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • T. C. Lubensky
    • 1
  1. 1.Department of PhysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations