Advertisement

Solute Effects on Grain Boundary Electromigration and Diffusion

  • F. M. d’Heurle
  • A. Gangulee

Abstract

The grain boundary transport of aluminum chromium, and copper resulting from electromigration at 175°C in aluminum-chromium and aluminum-copper thin film conductors has been measured. The forces acting on the various types of atoms are estimated from other experiments or from theoretical derivations. It is then possible to calculate the diffusion constants of the different atomic species. The values obtained for aluminum grain boundary diffusion in aluminum-chromium correspond well to values which have been found through different means in the grain boundary of pure silver. It is concluded that chromium does not reduce the rate of grain boundary diffusion of aluminum, but copper reduces this rate by a factor of about 80. The results of a series of electromigration experiments in aluminum-copper thin films are interpreted in terms of the information they yield on the diffusion of adsorbed copper atoms in aluminum-copper grain boundaries. The conclusions reached are compared to the previously reported results on the effect of alloy additions on grain boundary diffusion in a variety of different elements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Jost,‘Diffusion in Solids, Liquids and Gases’, Academic Press, New York, (1952), p. 324.Google Scholar
  2. 2.
    J. Verhoeven, Metal, Reviews, 8, 311–368 (1963).Google Scholar
  3. 3.
    H. B. Huntington, TMS-AIME, 245, 2571–2579 (1969).Google Scholar
  4. 4.
    Y. Adda and J. Philibert, ‘La Diffusion dans les Solides’, Presses Universitaires, Paris (1966), p. 893.Google Scholar
  5. 5.
    F. M. d’Heurle, Proc. IEEE, 59, 1409–1418 (1971).CrossRefGoogle Scholar
  6. 6.
    M. A. Dayananda, Met. Trans., 2, 334–335 (1971).CrossRefGoogle Scholar
  7. 7.
    M. Gerl, Z. Naturforsch, 26a, 1–9 (1971).Google Scholar
  8. 8.
    S. G. Epstein, Adv. Phys., 16, 325–332 (1960).CrossRefGoogle Scholar
  9. 9.
    J. R. Wilson, R.G.R. Sellors and J.N. Pratt, Adv. Phys., 16, 357 (1960).CrossRefGoogle Scholar
  10. 10.
    D. O. Olson, J. L. Blough and D. A. Rigney, Conference Abstracts, Joint AIME and ASM Fall Meeting, Detroit, (Oct., 1971), p. 1571.Google Scholar
  11. 11.
    J. C. Blair, P. B. Ghate and T. C. Haywood, Appl. Phys. Letters, 17, 281–283 (1970).CrossRefGoogle Scholar
  12. 12.
    R. E. Hummel and H. M. Breitling, Z. Naturforsch, 26a, 36–39 (1971).Google Scholar
  13. 13.
    P. S. Ho and L. D. Glowinski, Z. Natur forsch, 26a, 32–35 (1971).Google Scholar
  14. 14.
    L. Berenbaum, J. Appl. Phys., 42:, 880–882 (1971).CrossRefGoogle Scholar
  15. 15.
    J. K. Howard and R. Ross, J. Appl. Phys., 42, 2996–2998 (1971).CrossRefGoogle Scholar
  16. 16.
    A. Gonzales and E. M. Philofsky, Proc. IEEE, 59, 1429–1433 (1971).CrossRefGoogle Scholar
  17. 17.
    R. E. Hummel and H. M. Breitling, Appl. Phys. Letters, 18, 373–375 (1971).CrossRefGoogle Scholar
  18. 18.
    P. Adam, Z. Naturforsch, 26a, 40–44 (1971).Google Scholar
  19. 19.
    M. Ohring, J. Appl. Phys., 42, 2653–2661 (1971).CrossRefGoogle Scholar
  20. 20.
    M. Ohring, Mat. Sci. and Eng., 7, 158–167 (1971).CrossRefGoogle Scholar
  21. 21.
    R. Rosenberg and M. Ohring, J. Appl. Phys., to be published.Google Scholar
  22. 22.
    R. Rosenberg, J. Vac. Sci. Technology, 9, Jan/Feb (1972).Google Scholar
  23. 23.
    M. Ohring and P. H. Sun, J. Vac. Sci. Technology, 9, Jan/Feb (1972).Google Scholar
  24. 24.
    M. Ohring and P. H. Sun, Thin Solid Films, to be published.Google Scholar
  25. 25.
    D. L. Kennedy, J. Appl. Phys., 39, 6102–6104 (1968).CrossRefGoogle Scholar
  26. 26.
    I. Ames, F. M. d’Heurle and R. E. Horstmann, IBM J. Res. Develop., 14, 461–463 (1970).CrossRefGoogle Scholar
  27. 27.
    F. M. d’Heurle, Met. Trans., 2, 681–689 (1971).Google Scholar
  28. 28.
    L. Berenbaum and B. Patnaik, Appl. Phys. Letters, 18, 284–286 (1971).CrossRefGoogle Scholar
  29. 29.
    L. Berenbaum and R. Rosenberg, IEEE Proc. 9th Reliability Physics Symposium, Las Vegas (1971), pp. 136–141.Google Scholar
  30. 30.
    J. K. Howard and R. Ross, J. Appl. Phys., 42, 2996–2998 (1971).CrossRefGoogle Scholar
  31. 31.
    E. Hall, E. Philofsky and A. Gonzales, J. Electronic Mat., to be published.Google Scholar
  32. 32.
    M. C. Shine and F. M. d’Heurle, IBM J. Res. Dev., 15, 378–383 (1971).CrossRefGoogle Scholar
  33. 33.
    B. N. Agarwala, B. Patnaik and R. Schwitzel, J. Vac. Sci Technology, 9, Jan/Feb (1972).Google Scholar
  34. 34.
    F. M. d’Heurle, N. G. Ainslie, A. Gangulee and M. C. Shine, J. Vac. Sci. Technology, 9, Jan/Feb (1972).Google Scholar
  35. 35.
    A. Gangulee and F. M. d’Heurle, Appl. Phys. Letters, 19, 76–77 (1971).CrossRefGoogle Scholar
  36. 36.
    H. B. Huntington and A. R. Grone, J. Phys. Chem. Solids, 23, 76–87 (1961).CrossRefGoogle Scholar
  37. 37.
    C. Bosvieux and J. Friedel, J. Phys. Chem. Solids, 23, 123–126 (1962).CrossRefGoogle Scholar
  38. 38.
    F. M. d’Heurle, L. Berenbaum and R. Rosenberg, TMS-AIME, 242, 502–511 (1968).Google Scholar
  39. 39.
    I. Ames, J. Hoekstra and G. Folchi, Rev. Scient. Instrum., 42, 1049–1051 (1971).CrossRefGoogle Scholar
  40. 40.
    T. Federighi, ‘Lattice Defects in Quenched Metals’, R. Cotterill, M. Doyama, J. Jackson and M. Meshii, Eds, Academic Press, New York (1965), pp. 217–268.Google Scholar
  41. 41.
    H. K. Hardy, J. Inst. Met., 80, 483–492 (1951–52).Google Scholar
  42. 42.
    R. V. Penny, J. Phys. Chem. Solids, 25, 335–345 (1964).CrossRefGoogle Scholar
  43. 43.
    R. Rosenberg and L. Berenbaum, Appl. Phys. Letters, 12, 201–204 (1968).CrossRefGoogle Scholar
  44. 44.
    I. A. Blech and E. S. Meieran, J. Appl. Phys., 40, 485–491 (1969).CrossRefGoogle Scholar
  45. 45.
    M. J. Attardo and R. Rosenberg, J. Appl. Phys., 41, 2381–2386 (1970).CrossRefGoogle Scholar
  46. 46.
    V. N. Kaygorogdov, S. M. Klotsman, A. N. Timofeyev and I. S. Trakhtenberg, Fiz. Met. Metalloved 25, 910–923 (1968).Google Scholar
  47. 47.
    D. Turnbull and R. E. Hoffman, Acta Met., 2, 419–426 (1954).CrossRefGoogle Scholar
  48. 48.
    R. Rosenberg, Appl. Phys. Letters, 16, 27–29 (1970).CrossRefGoogle Scholar
  49. 49.
    K. T. Aust and J. W. Rutter, TMS-AIME, 215, 119–127 (1959).Google Scholar
  50. 50.
    K. T. Aust and J. W. Rutter, TMS-AIME, 215, 820–830 (1959).Google Scholar
  51. 51.
    D. McLean, ‘Grain Boundaries in Metals’,Oxford U. Press, London (1957), p.125.Google Scholar
  52. 52.
    D. R. Beaman, R. W. Baluffi and R.O. Simons, Phys. Rev., 134A, 532–542 (1964).CrossRefGoogle Scholar
  53. 53.
    D. R. Beaman, R. W. Baluffi and R. O. Simons, Phys. Rev., 137A, 917–924 (1966).Google Scholar
  54. 54.
    M. Hansen, ‘Constitution of Binary Alloys,’ McGraw Hill Co., New York (1958), pp. 81–84.Google Scholar
  55. 55.
    Nguyen Van Doan, J. Phys. Chem. Solids, 31, 2079–2085 (1970).CrossRefGoogle Scholar
  56. 56.
    J. Friedel, Can. J. Phys., 34, 1190–1211 (1956).CrossRefGoogle Scholar
  57. 57.
    P. Gordon and R. A. Vandermeer, TMS-AIME, 224, 917–928 (1962).Google Scholar
  58. 58.
    N. L. Peterson and S. J. Rothman, Phys. Rev.,B1,(1970).Google Scholar
  59. 59.
    W. Alexander and L. Silfkin, Phys. Rev., Bl, 3275–3282 (1970).Google Scholar
  60. 60.
    J. E. Hilliard, B. L. Averbach and M. Cohen, Acta Met., 7, 86–92 (1959).CrossRefGoogle Scholar
  61. 61.
    G. M. Hood, Phil. Mag., 21, 305–328 (1970).CrossRefGoogle Scholar
  62. 62.
    G. P. Tiwari and B. S. Sharma, Phil. Mag., 24, 739–743 (1971).CrossRefGoogle Scholar
  63. 63.
    G. M. Hood and R. J. Schultz, Phil. Mag., 23, (1971).Google Scholar
  64. 64.
    V. I. Arkharov, K. A. Efremova, S.I. Ivanovskaya, A.K. Sholts and B. A. Yulinov, Doklady Akad. Nauk. SSSR, 89, 269–270 (1953).Google Scholar
  65. 65.
    P. Guivaldenq and P. Lacombe, ‘Proprietes des Joints de Grains’, 4° Colloque de Metallurgie, Saclay (1960), Presses Universitaires de France, pp. 105–114.Google Scholar
  66. 66.
    C. Leymonie and P. Lacombe, Mem. Sci. Rev. Met., 57, 285–290 (1960).Google Scholar
  67. 67.
    S. Z. Bokshtein, ‘Diffusion Processes, Structure and Properties of Metals’, S. Z. Bokshtein Ed., Consultants Bureau, New York (1965) pp. 2–8.Google Scholar
  68. 68.
    A. Austin and N. Richards, J. Appl. Phys., 33, 3569–3574 (1962).CrossRefGoogle Scholar
  69. 69.
    V. I. Arkharov, S. M. Klotsman and A. N. Timofeyev, Fiz. Met. Metalloved, 6, 255–260 (1958).Google Scholar
  70. 70.
    V. I. Arkharov and A. A. Pentina, Fiz. Met. Metalloved, 5, 52–56 (1957).Google Scholar
  71. 71.
    G. Barreau, G. Brunei, G. Cizeron and P. Lacombe, Mem. Sci. Rev. Met., 68, 358–366 (1971).Google Scholar
  72. 72.
    V. I. Arkharov, S. M. Klotsman and A. N. Timofeyev, Fiz. Met. Metalloved, 8, 709–713 (1959).Google Scholar
  73. 73.
    S. M. Klotsman, A. N. Timofeyev and I. S. Trakhtenberg, Fiz. Met. Metalloved, 20, 78–83 (1965).Google Scholar
  74. 74.
    R. E. Hoffman and D. Turnbull, J. Appl. Phys., 22, 634–639 (1951).CrossRefGoogle Scholar
  75. 75.
    W. Schintlmeister and K. Richter, Planseeberichte für Pulvermetallurgie, 18, 3–6 (1970).Google Scholar
  76. 76.
    V. T. Borisov, V. M. Golikov and G. V. Scherbedinsky, Fiz. Met. Metalloved, 17, 881–885 (1964).Google Scholar
  77. 77.
    A. M. Huntz, P. Guivaldenq, M. Aucouturier and P. Lacombe, Mem. Sci. Rev. Met., 66, 85–104 (1969).Google Scholar
  78. 78.
    T. Rosso, M. Aucouturier and P. Lacombe, Scripta Met., 2, 393–398 (1968).CrossRefGoogle Scholar
  79. 79.
    M. Aucouturier, T. Araki. T. Rosso and P. Lacombe, Mem. Sci. Rev. Met., 65, 255–265 (1968).Google Scholar
  80. 80.
    V. N. Kaygorodov, S. M. Klotsman, A. N. Timofeyev and I. S. Trakhtenberg, Fiz. Met. Metalloved, 27, 1048–1053 (1969).Google Scholar
  81. 81.
    V. N. Kaygorodov, Y. A. Rabovsky and V. K. Talinsky, Fiz. Met. Metalloved, 24, 117–124 (1967).Google Scholar
  82. 82.
    V. N. Kaygorodov, S. M. Klotsman, A. N. Timofeyev and I. S. Trakhtenberg, Fiz. Met. Metalloved., 28, 120–128 (1969).Google Scholar
  83. 83.
    V. N. Kaygorodov, Y. A. Rabovsky and V. K. Talinsky, Fiz. Met. Metalloved, 24, 661–668 (1967).Google Scholar
  84. 84.
    J. B. Murphy, Acta Met., 9 563–569 (1961).CrossRefGoogle Scholar
  85. 85.
    T. S. Lundy and J. F. Murdock, J. Appl. Phys., 33, 1671–1673 (1958).CrossRefGoogle Scholar
  86. 86.
    M. Beyeler and D. Lazarus, Mem. Sci. Rev. Met., 67, 395–400 (1970).Google Scholar
  87. 87.
    T. Rosso and C. Sabatini, Scripta Met. 6, 51–54 (1972).CrossRefGoogle Scholar

Copyright information

© American Institute of Mining, Metallurgical and Petroleum Engineers, Inc. 1972

Authors and Affiliations

  • F. M. d’Heurle
    • 1
  • A. Gangulee
    • 1
  1. 1.IBM Thomas J. Watson Research CenterUSA

Personalised recommendations