Advertisement

The Behavior of Grain Boundaries During Recrystallization of Dilute Aluminum-Gold Alloys

  • R. A. Vandermeer

Abstract

The early stage of isothermal recrystallization of five polycrystalline alloys of zone-refined aluminum containing different amounts of gold and deformed 40% by rolling at 0°C was studied by quantitative metallography. All results could be interpreted in terms of a site-saturated, matrix grain edge nucleation at zero time with subsequent growth controlling the recrystallization kinetics. The length of the matrix edges producing recrystallized colonies depended on the penultimate grain size and was longer the larger that grain size. A modification of the original phenomeno-logical model was proposed which accounted for the observed discrepancies between the measured recrystallization parameters and the ones calculated from the earlier model. The presence of AuAl2 precipitates had no apparent effect on the nucleation mode. However, the apportionment of gold into a precipitated state caused an enormous (104) increase in boundary migration rate (recrystallization rate). With the exception of an alloy containing 3.4 ppm gold, the activation energy for recrystallization was 25,700 cal/ mole, did not vary with the extent of recrystallization, and was in approximate agreement with the solute drag theory of boundary migration. The migration behavior of the 3.4 ppm gold alloy suggested the possibility of a grain boundary structure transformation. A theory of vacancy-enhanced grain boundary migration during recrystallization of dilute alloys was proposed to account for the observations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Vandermeer and Paul Gordon, Trans. TMS-AIME, 215, 577–88, (1959).Google Scholar
  2. 2.
    R. A. Vandermeer, Met. Trans., 1, 819–26, (1970).Google Scholar
  3. 3.
    W. C. Leslie, F. J. Plecity, and J. T. Michalak, Trans. TMS-AIME, 221, 691–700, (1961).Google Scholar
  4. 4.
    R. A. Vandermeer and Paul Gordon, in Recovery and Recrystal-lization of Metals, Interscience Publishers, New York (1963),pp. 211–40.Google Scholar
  5. 5.
    K. Lücke and K. Detert, Acta Met.,5, 628–37, (1957).CrossRefGoogle Scholar
  6. 6.
    Paul Gordon and R. A. Vandermeer, Trans. TMS-AIME, 224, 917–28, (1962).Google Scholar
  7. 7.
    C. Frois and O. Dimitrov, Mem. Scient. Rev. Metallurg., 59, 643–48, (1962).Google Scholar
  8. 8.
    John W. Cahn, Acta Met., 10, 789–98, (1962).CrossRefGoogle Scholar
  9. 9.
    Kurt Iaicke and Hein-Peter Stüpwe, in Reeovery and Recrystal-lization of Metals, Interscience Publishers, New York (1963),pp. 171–210.Google Scholar
  10. 10.
    Paul Gordon and R. A. Vandermeer, in Recrystallization, Grain Growth and Textures, Am. Soc. Metals, Metals Park, Ohio (1966),pp. 205–66.Google Scholar
  11. 11.
    E. L. Holmes and W. C. Winegard, Trans. TMS-AIME, 224, 945–49, (1962).Google Scholar
  12. 12.
    Manfred von Heimendahl, Zeit, für Metallkunde,58, 230–35,(1967).Google Scholar
  13. 13.
    M. von Heimendahl, Acta Met., 15, 1441–52, (1967).CrossRefGoogle Scholar
  14. 14.
    Franz Schücker, in Quantitative Microscopy, R. T. DeHoff and F. N. Rhines, Editors, McGraw-Hill Book Co., New York (1968), pp. 201–65.Google Scholar
  15. 15.
    M. Avrami, J. Chem. Phys., 7, 1103, (1939); ibid., 8, 212, (1940); ibid., 9, 177, (1941).CrossRefGoogle Scholar
  16. 16.
    John W. Cahn and W. C. Hagel, Acta Met., 11, 561–74, (1963).CrossRefGoogle Scholar
  17. 17.
    John W. Cahn, Acta Met., 4, 449–59, (1956).CrossRefGoogle Scholar
  18. 18.
    D. Eylon, A. Rosen, and S. Niedzwiedz, Acta Met., 17, 1013–19, (1969).CrossRefGoogle Scholar
  19. 19.
    D. C. Larson and U. F. Kocks, Discussion to Ref. 7.Google Scholar
  20. 20.
    S. Weissmann, Trans. ASM, 53, 265–81, (1961).Google Scholar
  21. 21.
    W. C. Leslie, J. T. Michalak, and F. W. Aul, in Iron and Its Dilute Solid Solution, C. W. Spencer and F. E. Werner, Editors, Interscience Publishers, New York (1963), p. 119.Google Scholar
  22. 22.
    C. Zener, see D. McLean: Grain Boundaries in Metals, Oxford University Press, London (1957), pp. 239–40.Google Scholar
  23. 23.
    P. Messen and W. C. Winegard, J. Inst. Metals, 94, 31–35, (1966).Google Scholar
  24. 24.
    C. J. Simpson, K. T. Aust, and W. C. Winegard, Met. Trans., 2, 993–97, (1971).CrossRefGoogle Scholar
  25. 25.
    G. F. Boiling, Trans. TMS-AIME, 239, 193–203, (1967).Google Scholar
  26. 26.
    R. Fromageau and Ph. Albert, Compt. Rend., 260, 895–97, (1965).Google Scholar
  27. 27.
    N. L. Peterson and S. J. Rothman, Phys. Rev. B. Solid State, 1(8), 3264–73, (1970).CrossRefGoogle Scholar
  28. 28.
    W. B. Alexander and L. M. Slifkin, Phys. Rev. B Solid State, 1(8), 3274–02, (1970).CrossRefGoogle Scholar
  29. 29.
    F. M. d’Heurle, private communication, also this volume.Google Scholar
  30. 30.
    E. W. Hart, Scripta Met., 2, 179–82, (1968); also this volume.CrossRefGoogle Scholar
  31. 31.
    Herbert Gleiter, Zeit, für Metallkunde, 61, 282–87, (1970).Google Scholar
  32. 32.
    K. T. Aust, Can. Met. Quart., 8, 173–78, (1969).CrossRefGoogle Scholar
  33. 33.
    C. J. Simpson, K. T. Aust, W. C. Winegard, Met. Trans., 2, 987–91, (1971).CrossRefGoogle Scholar
  34. 34.
    W. In der Schmitten, P. Haasen, and F. Haessner, Zeit für Metallkunde, 51, 101–8, (1960).Google Scholar
  35. 35.
    L. M. Clarebrough, M. E. Hargreaves, and M. H. Loretto, in Recovery and Recrystallization of Metals, Interscience Publishers, New York (1963), pp. 63–130.Google Scholar
  36. 36.
    T. Federighi, in Lattice Defects in Quenched Metals, R. M. Cotterill et al, eds., Academic Press, New York(1965), pp. 217–68.Google Scholar

Copyright information

© American Institute of Mining, Metallurgical and Petroleum Engineers, Inc. 1972

Authors and Affiliations

  • R. A. Vandermeer
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations