On the Theory of Grain Boundary Motion

  • K. Lücke
  • R. Rixen
  • F. W. Rosenbaum


In order to predict the exact mechanism of grain boundary motion one has to know the atomistic structure of the grain boundary. Although some progress in the understanding of grain boundary structure has been made in recent years, a generally accepted model which is widely applicable is not yet available. In the present paper several alternatives will be treated. First, models will be considered where the boundary is assumed to consist of a distorted zone having a large width compared to the atomic distance. Here thermodynamic formulas can be applied. Secondly, grain boundaries are assumed to have a width of only atomistic dimensions. Here, in particular, the ledge model will be considered. Special emphasis will be given to the impurity drag model and to the orientation dependence of grain boundary motion which is considered largely responsible for the formation of recrystallization textures. Finally a general comparison between theoretical predictions and the various experimental observations of grain boundary motion will be made.


Free Boundary Atomistic Model Boundary Structure Atomic Plane Boundary Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Gleiter, Phys. Stat. Sol. (b), 45, 9–38, (l97l).Google Scholar
  2. 2.
    K. Lücke and H. P. Stüwe, in Recovery and Recrvstallization of Metals, ed. by L. Himmel, Interscience, New York, 1963, pp.171–210.Google Scholar
  3. 3.
    M. Weins, B. Chalmers, H. Gleiter and M. Ashby, Scripta Met., 3, 60, (1969).CrossRefGoogle Scholar
  4. 4.
    G. F. Boiling, Ford Publication Preprint.Google Scholar
  5. 5.
    H. Gleiter, Acta Met., 17, 853–62, (1969).CrossRefGoogle Scholar
  6. 6.
    F. Haessner and S. Hofmann, Z. Metallkde, 62, 807–10, (1971).Google Scholar
  7. 7.
    M. Feller-Kniepmeier and K. Schwartzkopf, Acta Met., 17, 497–503, (1969).CrossRefGoogle Scholar
  8. 8.
    K. Lücke and K. Detert, Acta Met., 5, 628–37, (1957).CrossRefGoogle Scholar
  9. 9.
    P. Gordon and R. A. Vandermeer, in Recrvstallization. Grain Growth and Textures, ASM, Metals Park, Ohio, 1966, pp.205–66.Google Scholar
  10. 10.
    K. Lücke, Z. Metallkde., 41, 114–24, (1950).Google Scholar
  11. 11.
    R. Smoluchowski, Phys. Rev., 83, 69, (1951).CrossRefGoogle Scholar
  12. 12.
    N. F. Mott, Proc. Phys. Soc. (London), 60, 391, (1948).CrossRefGoogle Scholar
  13. 13.
    J. W. Cahn, Acta Met., 10, 789–98, (1962).CrossRefGoogle Scholar
  14. 14.
    K. Lücke and H. P. Stüwe, Acta Met., 19, 1087–99 (1971).CrossRefGoogle Scholar
  15. 15.
    F. W. Rosenbaum and K. Lücke, to be published, F. W. Rosenbaum, Doctor-Thesis, T. H.Aachen, (1971).Google Scholar
  16. 16.
    H. Gleiter, Z. Metallkde, 61, 282–86, (1970).Google Scholar
  17. 17.
    C. J. Simpson, K. T. Aust, and W. C. Winegard, Met. Trans., 2, 987–91 and 993-97, (1971).CrossRefGoogle Scholar
  18. 18.
    C. Frois and O. Dimitrov, Mem. Sci. Rev. Met., 59, 643–48, (1962).Google Scholar
  19. 19.
    P. Gordon and R. A. Vandermeer, Trans. TMS-AIME, 224, 917–28, (1962).Google Scholar
  20. 20.
    K. T. Aust and J. W. Rutter, Trans. TMS-AIME, 215, 119–27, (1959).Google Scholar
  21. 21.
    W. Grünwald and F. Haessner, Acta Met., 18, 217–24, (1970).CrossRefGoogle Scholar
  22. 22.
    E. Scheucher, Z. Metallkde, 60, 422–28 and 808-12, (1969).Google Scholar
  23. 23.
    B. B. Rath and H. Hu, Trans. TMS-AIME, 245, 1243–52 and 1577-85, (1969).Google Scholar
  24. 24.
    J. P. Drolet and A. Galibois, Acta Met., 16, 1387–99 (1968).CrossRefGoogle Scholar
  25. 25.
    B. Liebmann, K. Lücke and G. Masing, Z. Metallkde, 47, 57–63, (1956).Google Scholar
  26. 26.
    G. Ibe and K. Lücke, in Recrystallization, Grain Growth and Textures. ASM, Metals Park, Ohio, 1966, pp. 434–447.Google Scholar
  27. 27.
    G. Sixt, Diplom-Thesis, T. H. Aachen, (1969).Google Scholar
  28. 28.
    G. Ibe, W. Dietz, A. C. Fraker and K. Lücke, Z. Metallkde, 61, 498–507, (1970).Google Scholar
  29. 29.
    R. Rixen, Diplom-Thesis, T. H. Aachen, (1966).Google Scholar
  30. 30.
    H. Perlwitz, Diplom-Thesis, T. H. Aachen, (1963).Google Scholar
  31. 31.
    P. A. Beck, (a) Acta Met., 1, 230–34, (1953); (b) Phil. Mag. Sup. (Advances in Physics), 3, 245-324, (1954).CrossRefGoogle Scholar
  32. 32.
    K. Lücke and R. Rixen, Met. Trans., 1, 259–66, (1970); and Discussion, ibid, 2342-44, (1970).CrossRefGoogle Scholar
  33. 33.
    R. Alam, Doctor-Thesis, T. H. Aachen, (1967).Google Scholar
  34. 34.
    U. Gebauer (now U. Schmidt), Diplom-Thesis, T. H. Aachen, (1970).Google Scholar
  35. 35.
    Ref. 31(b), p.309.Google Scholar
  36. 36.
    J. Hintermayer, Diplom-Thesis, T. H. Aachen, (1971).Google Scholar

Copyright information

© American Institute of Mining, Metallurgical and Petroleum Engineers, Inc. 1972

Authors and Affiliations

  • K. Lücke
    • 1
  • R. Rixen
    • 1
  • F. W. Rosenbaum
    • 1
  1. 1.Institut für Allgemeine Metallkunde und MetallphysikTechnische HochschuleAachenGermany

Personalised recommendations