Advertisement

Mechanical Effects of Grain Boundaries

  • K. T. Aust
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 14)

Abstract

A summary of previous studies, together with new observations, of the interfacial hardening effect is presented. The topics considered include: hardening associated with vacancies and vacancy-solute interactions, examination by transmission electron-microscopy, vacancy condensation pits, solute-vacancy binding energies, solute clustering and impurity segregation. The results provide support for a solute-clustering model for grain boundary quench-hardening. The general implications of this work to other metallurgical phenomena are briefly considered.

Keywords

Austenitic Stainless Steel Mechanical Effect Boundary Hardening Solute Atom Solute Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Westbrook, J. H. and Aust, K. T., “Solute Hardening at Interfaces in High-Purity Lead, I-Grain and Twin Boundaries,” Acta Met., 11 (1963), 1151.CrossRefGoogle Scholar
  2. 2.
    Aust, K. T. and Westbrook, J. H., “Effect of Quenching on Grain Boundary Hardening in Dilute Lead-Gold Alloys,” Lattice Defects in Quenched Metals, Cotterill et al., eds., Academic Press, New York and London (1965), 771.Google Scholar
  3. 3.
    Aust, K. T., Peat, A. J. and Westbrook, J. H., “Quench-Hardening Gradients Near Vacancy Sinks in Crystals of Zone Refined Lead,” Acta Met., 14 (1966), 1469.CrossRefGoogle Scholar
  4. 4.
    Aust, K. T., Hanneman, R. E., Niessen, P. and Westbrook, J. H., “Solute Induced Hardening Near Grain Boundaries in Zone Refined Metals,” to be published in Acta Met., 16 (1968), 291.CrossRefGoogle Scholar
  5. 5.
    Aust, K. T. and Rutter, J. W., “Temperature Dependence of Grain Boundary Migration in High-Purity Lead Containing Small Additions of Tin,” Trans. Met. Soc. AIME, 215 (1959), 820.Google Scholar
  6. 6.
    Aust, K. T., unpublished research.Google Scholar
  7. 7.
    Westbrook, J. H., “Segregation at Grain Boundaries,” Met. Rev., 9, No. 36 (1964), 415.Google Scholar
  8. 8.
    Haworth, C. W., Braunovic, M. and Weiner, R. T., “Grain Boundary Hardening in Fe and Fe Alloys,” Met. Sci. J., 2 (1968), 67.CrossRefGoogle Scholar
  9. 9.
    Turnbull, D., private communication, (1963).Google Scholar
  10. 10.
    Fleischer, R. L., “Solid-Solution Hardening,” The Strengthening of Metals, D. Peckner, ed., Reinhold, New York (1964), 93.Google Scholar
  11. 11.
    Phillips, V. A., private communication (1967).Google Scholar
  12. 12.
    Paulus, M., private communication (1967).Google Scholar
  13. 13.
    Westbrook, J. H. and Aust, K. T., unpublished research.Google Scholar
  14. 14.
    Doherty, P. E. and Davis, R. S., “The Formation of Surface Pits by the Condensation of Vacancies,” Acta Met., 7 (1959), 118.CrossRefGoogle Scholar
  15. 15.
    Rutter, J. W. and Aust, K. T., “Grain Boundary Migration Motivated by Substructure in High-Purity Metal Crystals,” Acta Met., 6 (1958), 375.CrossRefGoogle Scholar
  16. 16.
    Aust, K. T and Rutter, J. W., “Some Annealing Phenomena in High-Purity Metals,” Ultra-High-Purity Metals, ASM, Metals Park, Ohio (1962), 115.Google Scholar
  17. 17.
    Aust, K. T., “Annealing Twins and Coincidence Site Boundaries in Zone-Refined Aluminum,” Trans. Met. Soc. AIME, 221 (1961), 758.Google Scholar
  18. 18.
    Barnes, R. S., Redding, G. B. and Cottrell, A. H., “Observation of Vacancy Sources in Metals,” Phil. Mag., 3 (1958), 97.CrossRefGoogle Scholar
  19. 19.
    Barnes, R. S., “The Generation of Vacancies in Metals,” Phil. Mag., 5 (1960), 635.CrossRefGoogle Scholar
  20. 20.
    Doherty, P. E. and Davis, R. S., “Observations of the Structure of Aluminum Specimens Grown from the Melt,” Trans. Met. Soc. AIME, 221 (1961), 737.Google Scholar
  21. 21.
    Lommel, J. M., “Surface Markings and Their Relation to Dislocations in Aluminum,” presented at Met. Soc. AIME meeting, Philadelphia (Oct. 17, 1960).Google Scholar
  22. 22.
    Evans, K. R. and Flanagan, W. F., “The Origin of Dislocations and Substructure Arrangements in Copper Single Crystals,” Phil. Mag., 14 (1966), 1131.CrossRefGoogle Scholar
  23. 23.
    Unwin, P. N. T. and Nicholson, R. B., Solid State Physics Conference, Manchester, England, (Jan. 4–7, 1967).Google Scholar
  24. 24.
    McLean, D., Grain Boundaries in Metals, Oxford, Clarendon Press (1957).Google Scholar
  25. 25.
    Brandon, D. G., Ralph, B., Ranganathan, S. and Wald, M. S., “A Field Ion Microscope Study of Atomic Configuration at Grain Boundaries,” Acta Met., 12 (1964), 813.CrossRefGoogle Scholar
  26. 26.
    Jorgensen, P. J. and Westbrook, J. H., “Role of Solute Segregation at Grain Boundaries During Final-Stage Sintering of Alumina,” J. Amer. Ceram. Soc, 47 (1964), 332.CrossRefGoogle Scholar
  27. 27.
    Aust, K. T., Armijo, J. S., Koch, E. F. and Westbrook, J. H., “Intergranular Corrosion and Electron Microscopic Studies of Austenitic Stainless Steels,” Trans. Quart., ASM, 60 (1967), 360.Google Scholar
  28. 28.
    Aust, K. T., “Some Physical and Chemical Properties of Grain Boundaries,” Surfaces and Interfaces I: Physical and Chemical Characteristics, Burke et al., eds., Syracuse University Press (1967), 435.Google Scholar
  29. 29.
    Aust, K. T., Armijo, J. S., Koch, E. F. and Westbrook, J. H., “Intergranular Corrosion and Mechanical Properties of Austenitic Stainless Steels,” Trans. Quart, ASM, 61 (1968), 270.Google Scholar
  30. 30.
    Armijo, J. S., “Effects of Impurity Additions on the Intergranular Corrosion of High Purity Fe-Cr-Ni Austenitic Alloys,” Corrosion, 24 (1968), 24.Google Scholar

References

  1. 1.
    Hall, E. D., “The Deformation and Aging of Mild Steel: III Discussion of Results,” Proc. Phys. Soc, 64B (1951), 747.CrossRefGoogle Scholar
  2. 2.
    Low, J. R., “The Relation of Microstructure to Brittle Fracture,” Symposium on Relation of Properties to Microstructure, ASM (1954), 163.Google Scholar
  3. 3.
    Petch, N. J., “The Cleavage Strength of Polycrystals,” J. Iron and Steel Inst., 173 (1953), 25.Google Scholar
  4. 4.
    Grange, R. A., “Strengthening Steel by Austenite Grain Refinement,” ASM Trans. Quart., 59 (1966), 26.Google Scholar
  5. 5.
    Morrison, W. B., “The Effect of Grain Size on the Stress-Strain Relationship in Low-Carbon Steel,” ASM Trans. Quart., 59 (1966), 84.Google Scholar
  6. 6.
    Chapman, J. A. and Wilson, D. V., “The Room Temperature Ductility of Fine-Grain Magnesium,” Journal of the Institute of Metals, XCI (1962), 39.Google Scholar
  7. 7.
    Abrahamson, E. P., II, “Electron Concentration and Metallic Properties,” Strengthening Mechanisms—Metals and Ceramics, Syracuse University Press (1966), 291.Google Scholar
  8. 8.
    Leslie, W. C., Plecity, F. J. and Aul, F. W., “Recrystallization of Dilute Alpha Iron—Molybdenum Solid Solutions,” Trans. AIME, 221 (1961), 982.Google Scholar
  9. 9.
    Abrahamson, E. P., II and Blakeney, B. S., Jr., “The Recrystallization Temperature of Iron as Affected by Dilute Transitional Elements,” Trans. AIME, 218 (1960), 1101.Google Scholar

References

  1. 1.
    Aust, K. T., “Some Mechanical Effects of Grain Boundaries,” Fourteenth Sagamore Materials Research Conference (August 1967).Google Scholar
  2. 2.
    Westbrook, J. H., “Microhardness Testing at High Temperatures,” Proc. ASTM, 57 (1957), 873–897.Google Scholar
  3. 3.
    Hirsch, P. B., Silcox, J., Smallman, R. E. and Westmacott, K. H., “Dislocation Loops in Quenched Aluminum,” Phil. Mag., 3 (1958), 897–908.CrossRefGoogle Scholar
  4. 4.
    Barrer, R. M., Diffusion in and Through Solids, MacMillian, New York (1931).Google Scholar
  5. 5.
    Barrett, M. A. and Massalski, T. B., Structure of Metals, McGraw-Hill, New York (1966), 370.Google Scholar
  6. 6.
    Huntington, H. B., The Elastic Constants of Crystals, Academic Press, New York (1958).Google Scholar
  7. 7.
    Linde, J. O. and Edwardson, S., “Critical Shear Stress for Single Crystals of Metallic Solid Solutions,” Arkiv Fysik, 8 (1954), 511–519.Google Scholar
  8. 8.
    Koehler, J. S., “On the Theory of Plastic Deformation,” Phys. Rev., 60 (1941), 397–410.CrossRefGoogle Scholar
  9. 9.
    Head, K. A., “The Interaction of Dislocations and Boundaries,” Phil. Mag., 44 (1953), 92–94.Google Scholar
  10. 10.
    Mott, N. F. and Nabarro, F. R. N., “An Attempt to Estimate the Degree of Precipitation Hardening with a Simple Model,” Proc. Phys. Soc, London, 52 (1940), 86–89.CrossRefGoogle Scholar
  11. 11.
    Fleischer, R. L., “Solution Hardening,” Acta Met., 9 (1961), 996–1000.CrossRefGoogle Scholar
  12. 12.
    Frank, C. F. and Van der Merwe, J. H., “One-Dimensional Dislocations,” Proc. Roy Soc, 198 (1949), 205–225.CrossRefGoogle Scholar
  13. 13.
    Kramer, I. R., “Role of the Surface Layer in the Plastic Deformation of Aluminum,” Environment Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 127–146.Google Scholar
  14. 14.
    Vermaak, J. S. and Van der Merwe, J. H., “On Misfit Dislocations in the Diffusion Zone of a Bicrystal System,” Phil. Mag., 12 (1965), 453–465.CrossRefGoogle Scholar
  15. 15.
    Levine, E., Washburn, J. and Thomas, G., “Diffusion Induced Defects in Silicon,” J. Appl. Phys., 38 (1967), 81–95.CrossRefGoogle Scholar
  16. 16.
    For example, see Nabarro, F. R. N. and Basinski, Z. S., “The Elastic Deformation of Pure Single Crystals,” Advances in Physics, 13 (1964), 193–323.CrossRefGoogle Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1968

Authors and Affiliations

  • K. T. Aust
    • 1
  1. 1.Department of Metallurgy and Materials ScienceUniversity of TorontoCanada

Personalised recommendations