Skip to main content

Kinetics of Sub-critical Crack Growth in High Strength Materials

  • Chapter
  • 302 Accesses

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((SAMC,volume 14))

Abstract

The major experimental evidence bearing upon sub-critical crack growth in high strength materials is briefly reviewed. The possibility of crack growth rate control by either reaction rate or diffusion is suggested.

A phenomenological analysis of crack growth rate is given, which incorporates both chemical and mechanical parameters. For elastic systems, a linear relation between the excess chemical potential at the crack tip and the strain energy release rate is demonstrated. For plasticity at the crack tip, an effective chemical driving force is defined in terms of the strain energy release rate and the energy of plastic deformation.

The different crack growth rate behaviors to be expected with interface reaction rate control and diffusion control are developed phenomenologically, and discussed with reference to current experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Fracture Toughness Testing and Its Applications,” ASTM, STP 381 (1965).

    Google Scholar 

  2. Johnson, H. H. and Paris, P. C., “Sub-critical Flaw Growth,” J. Eng. Frac. Mech., 1 (1968), 1.

    Article  Google Scholar 

  3. Johnson, H. H. and Willner, A. M., “Moisture and Stable Crack Growth in a High Strength Steel,” Applied Mat. Res., 4 (1965), 34.

    CAS  Google Scholar 

  4. Peterson, M. H., Brown, B. F., Newbegin, R. T. and Groover, R. E., “Stress Corrosion Cracking of High Strength Steels and Titanium Alloys in Chloride Solutions at Ambient Temperature,” Corrosion, 23 (1967), 142.

    CAS  Google Scholar 

  5. Smith, H. R., Piper, D. E. and Downey, F. K., “A Study of Stress Corrosion Cracking by Wedge Force Loading,” to be published in J. Eng. Frac. Mech.

    Google Scholar 

  6. Li, Che-Yu, Talda, P. M., and Wei, R. P., “The Effect of Environments on Fatigue Crack Propagation in a Quenched and Tempered High-Strength Steel,” Int. J. Frac. Mech., 3 (1967), 29.

    CAS  Google Scholar 

  7. Wei, R. P., Talda, P. M. and Li, Che-Yu, “Fatigue Crack Propagation in Some High Strength Steels,” ASTM, STP, 415 (1967).

    Google Scholar 

  8. Irwin, G. R., “Moisture Assisted Slow Crack Extension in Glass Plates,” Naval Research Laboratory Memorandum Report 1678 (1966).

    Google Scholar 

  9. Wiederhorn, S., Environment Sensitive Mechanical Behavior, Westwood, A. R. C. and Stoloff, N. S., eds., Gordon and Breach (1967), 293–317.

    Google Scholar 

  10. Wiederhorn, S., “The Influence of Water Vapor on Crack Propagation in Soda-lime Glass,” National Bureau of Standards Report 9442 (1966).

    Google Scholar 

  11. Rowe, B. F., “Mechanical Restraint, Hydrogen Gas, and Brittle Fracture of a High Strength Steel,” M.S. Thesis, Cornell University (1966).

    Google Scholar 

  12. Van Der Sluys, W. A., “Mechanisms of Environment Induced Sub-critical Flaw Growth in AISI 4340 Steel,” presented at First National Symposium on Fracture Mechanics, Lehigh University (1967).

    Google Scholar 

  13. Steigerwald, E. A., Schaller, F. W. and Troiano, A. R., “Discontinuous Crack Growth in Hydrogenated Steel,” Trans. Met. Soc. AIME, 215 (1959), 1048.

    CAS  Google Scholar 

  14. Beck, W., Bockris, J. O’M., McBreen, J. and Nanis, L., “Hydrogen Permeation in Metals as a Function of Stress, Temperature and Dissolved Hydrogen Concentration,” Proc. Roy. Soc. (London), A290 (1966), 221.

    Google Scholar 

  15. Hartman, A., “On the Effect of Oxygen and Water Vapor on the Propagation of Fatigue Cracks in 2024-T3 Alclad Sheet,” Int. J. Frac. Mech., 1 (1965), 167.

    CAS  Google Scholar 

  16. Bradshaw, F. J. and Wheeler, C., “The Effect of Environment on Fatigue Crack Growth in Aluminum and Some Aluminum Alloys,” Applied Materials Research, 5 (1966), 112.

    CAS  Google Scholar 

  17. Hancock, G. G. and Johnson, H. H., “Hydrogen, Oxygen and Sub-critical Crack Growth in a High Strength Steel,” Trans. Met. Soc. AIME, 238 (1966), 513.

    Google Scholar 

  18. Hancock, G. G. and Johnson, H. H., “Sub-critical Crack Growth in AM 350 Steel,” Materials Research and Standards, 6 (1966), 431.

    CAS  Google Scholar 

  19. Li, Che-Yu, Talda, P. and Wei, R. P., “Sub-critical Crack Growth in an Inert Environment Under Constant Load,” unpublished research, U.S. Steel Applied Research Laboratory.

    Google Scholar 

  20. Yang, Ling, Horne, C. T. T. and Pound, G. M., in Physical Metallurgy of Stress Corrosion Fracture, ed. Rhodin, T. N., Interscience Publishers (1959), 29–39.

    Google Scholar 

  21. Li, J. C. M., Oriani, R. A., and Darken, L. S., “The Thermodynamics of Stressed Solids,” Z. Physik Chem., Neue Folge, 49 (1966), 18.

    Article  Google Scholar 

  22. Robertson, W. M., “Propagation of a Crack Filled with Liquid Metal,” Trans. Met. Soc. AIME, 236 (1966), 1478.

    CAS  Google Scholar 

  23. Creager, M. and Paris, P. C., “Elastic Field Equations for Blunt Cracks with Reference to Stress Corrosion Cracking,” Int. J. Frac. Mech., 3 (1967), 247.

    CAS  Google Scholar 

  24. Irwin, G. R., “Analysis of Stresses and Strain Near the End of a Crack Traversing a Plate,” J. Applied Mechanics, 24, Trans. ASME, 79 (1957), 361.

    Google Scholar 

  25. Sanders, Jr., J. L., “On the Griffith-Irwin Fracture Theory,” Trans. ASME, 27 Series E, (1960), 352.

    Article  Google Scholar 

  26. Hillig, W. B. and Charles, R. J., “Surfaces, Stress-Dependent Reactions and Strength,” General Electric Research Laboratory Report No. 64-RL-3756M (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Syracuse University Press Syracuse, New York

About this chapter

Cite this chapter

Li, CY., Johnson, H.H. (1968). Kinetics of Sub-critical Crack Growth in High Strength Materials. In: Burke, J.J., Reed, N.L., Weiss, V. (eds) Surfaces and Interfaces II. Sagamore Army Materials Research Conference Proceedings, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0178-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0178-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0180-7

  • Online ISBN: 978-1-4757-0178-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics