The Role of Brittle Surface Films in Stress-Corrosion Phenomena

  • E. N. Pugh
  • A. J. Sedriks
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 14)

Abstract

Recent research has indicated that stress-corrosion cracking in several systems may occur by the repeated formation and rupture of a brittle surface film. In this paper, evidence is presented which suggests that this film-rupture model is operative in the failure of alpha brass in tarnishing ammoniacal environments, alpha-phase titanium alloys in liquid nitrogen tetroxide, and the non-metal silver chloride in certain complex-forming aqueous solutions. In the case of the metals the brittle film is an oxide (Cu2O and TiO2, respectively), and for AgCl it is a defect-hardened charge double layer. Other evidence is described which suggests that this mechanism may also be operative in other systems, e.g., austenitic stainless steel and magnesium-aluminum alloys in chloride-containing environments.

Keywords

Zinc TiO2 Fatigue Titanium Porosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Forty, A. J. and Humble, P., “The Influence of Surface Tarnish on the Stress-Corrosion of Alpha-Brass,” Phil. Mag., 8, No. 86 (1963), 247–264.CrossRefGoogle Scholar
  2. 2.
    McEvily, A. J., Jr. and Bond, A. P., “On the Initiation and Growth of Stress-Corrosion Cracks in Tarnished Brsss,” J. Electrochem. Soc, 112, No. 2 (1965), 131–138.CrossRefGoogle Scholar
  3. 3.
    Bailey, A. R., “Stress-Cracking of Brass,” Met. Rev., 6, No. 21 (1961), 101–142.CrossRefGoogle Scholar
  4. 4.
    Johnson, H. E. and Leja, J., “Surface Chemical Factors in the Stress-Corrosion Cracking of Alpha Brass,” Corrosion, 22, No. 6 (1966), 178–189.Google Scholar
  5. 5.
    Hoar, T. P. and Booker, C. J. L., “The Elextrochemistry of Stress-Corrosion Cracking of Alpha Brass,” Corrosion Science, 5, No. 12 (1965), 821–840.CrossRefGoogle Scholar
  6. 6.
    Pugh, E. N., Craig, J. V., and Sedriks, A. J., “The Stress-Corrosion Cracking of Copper, Silver and Gold Alloys,” Proc. Int. Conf. on Stress-Corrosion Cracking, Columbus, Ohio, September, 1967, to be published.Google Scholar
  7. 7.
    Pugh, E. N., “On the Mechanism(s) of Stress-Corrosion Cracking,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 351–401.Google Scholar
  8. 8.
    Sartell, J. A., Stokes, R. J., Bendell, S. H., Johnston, T. L. and Li, C. H., “Role of Oxide Plasticity in the Oxidation Mechanism of Pure Copper,” Trans. AIME, 215, No. 3 (1959), 420–424.Google Scholar
  9. 9.
    Pugh, E. N., Montague, W. G., and Craig, J. V., to be published.Google Scholar
  10. 10.
    Sutton, H., Liddiard, E. A., Chalmers, B., and Champion, F. A., J. Inst. Metals, 71 (1945), xvii.Google Scholar
  11. 11.
    Edmunds, G., “Season Cracking of Brass,” Symposium on Stress-Corrosion Cracking of Metals, ASTM-AIME (1944), 67–89.Google Scholar
  12. 12.
    Thompson, D. H. and Tracey, A. W., “Influence of Composition on the Stress-Corrosion Cracking of Some Copper-Base Alloys,” Trans. AIME, 185, No. 2 (1949), 100–109.Google Scholar
  13. 13.
    Pugh, E. N. and Montague, W. G., to be published.Google Scholar
  14. 14.
    King, E. J., Kappelt, G. F., and Fields, C., “Titanium Stress-Corrosion Cracking in N2O4,” Bell-Aerosystems Report (April 1966), Buffalo, N.Y.Google Scholar
  15. 15.
    Sedriks, A. J., “Structure of Tarnish Films on Stress-Corrosion Fracture Surfaces of Ti-5 Pct Al-2.5 Pct Sn Alloy Tested in Nitrogen Tetroxide,” Trans. AIME, 239, No. 6 (1967), 916–917.Google Scholar
  16. 16.
    Sedriks, A. J., Slattery, P. W., and Pugh, E. N., “Stress-Corrosion Cracking of Alpha-Titanium in Non-Aqueous Environments,” Proc. Int. Conf. on Stress Corrosion Cracking, Columbus, Ohio, September 1967, to be published.Google Scholar
  17. 17.
    Ashbee, K. H. G. and Smallman, R. E., “The Plastic Deformation of Titanium Dioxide Single Crystals,” Proc. Roy. Soc, 274A, No. 1357 (1963), 195–205.CrossRefGoogle Scholar
  18. 18.
    Kubaschewski, O. and Hopkins, B. E., Oxidation of Metals and Alloys, Butterworths, London (1953), 8–11 and 61–67.Google Scholar
  19. 19.
    Westwood, A. R. C., Goldheim, D. G., and Pugh, E. N., “Embrittlement of Polycrystalline Silver Chloride,” Disc. Faraday Soc, No. 38 (1964), 147–156.CrossRefGoogle Scholar
  20. 20.
    Levine, E., Solomon, H., and Cadoff, I., “Fracture Characteristics of Polycrystalline AgCl Wet with Aqueous Solutions,” Acta Met., 12, No. 10 (1964), 1119–1124.CrossRefGoogle Scholar
  21. 21.
    Westwood, A. R. C., Goldheim, D. L., and Pugh, E. N., “Fracture Behavior of AgCl in Aqueous NaCl,” Acta Met., 13, No. 6 (1965), 695–700.CrossRefGoogle Scholar
  22. 22.
    Westwood, A. R. C., Goldheim, D. L., and Pugh, E. N., “Complex-ion Embrittlement of Silver Chloride,” Material Science Research, 3, Plenum Press, New York (1966), 553–576.Google Scholar
  23. 23.
    Westwood, A. R. C., Goldheim, D. L., and Pugh, E. N., “A Double-Layer Mechanism for the Complex-Ion Embrittlement of AgCl,” Phil. Mag., 15, No. 133 (1967), 105–120.CrossRefGoogle Scholar
  24. 24.
    Friauf, R. J., “Correlation Effects for Diffusion in Ionic Crystals,” J. Appl. Phys., 33, No. 1 (1962), 494–505.CrossRefGoogle Scholar
  25. 25.
    Westwood, A. R. C., Goldheim, D. L.,. and Pugh, E. N., unpublished work.Google Scholar
  26. 26.
    Abbink, H. C. and Martin, D. S., “Ionic Conductivity of Silver Chloride Containing Cadmium Chloride,” J. Phys. Chem. Solids, 27, No. 1 (1966), 205–215.CrossRefGoogle Scholar
  27. 27.
    Ebert, I. and Teltow, J., “Zur Ionenleitung und Fehlordnung von Silberchlorid mit Zusätzen,” Ann. Physik, 15, Series 6 (1954), 268–278.Google Scholar
  28. 28.
    Abey, A. E. and Tomizuka, C. T., “The Effect of Hydrostatic Pressure on the Ionic Conductivity of Silver Chloride,” J. Phys. Chem. Solids, 27, No. 6/7 (1966), 1149–1159.CrossRefGoogle Scholar
  29. 29.
    Fairman, L. and West, J. M., “Stress-Corrosion Cracking of a Magnesium-Aluminum Alloy,” Corrosion Science, 5, No. 10 (1965), 711–716.CrossRefGoogle Scholar
  30. 30.
    Logan, H. L., McBee, M. J., and Kahan, D. J., “Evidence for an Electrochemical-Mechanical Stress-Corrosion Fracture in a Stainless Steel,” Corrosion Science, 5, No. 10 (1965), 729–730.CrossRefGoogle Scholar
  31. 31.
    McEvily, A. J., Jr., and Bond, A. P., “On Film Rupture and Stress-Corrosion Cracking,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 421–443.Google Scholar
  32. 32.
    Rittenhouse, J. B., “The Corrosion, Pyrophoricity and Stress-Corrosion Cracking of Titanium Alloys in Fuming Nitric Acid,” Trans. ASM, 51, (1959), 871–895.Google Scholar
  33. 33.
    Inglis, C. E., “Stresses in a Plate due to the Presence of Cracks and Sharp Corners,” Transactions of the Institution of Naval Architects, 55 (1913), 219–230.Google Scholar
  34. 34.
    Westwood, A. R. C., “Effects of Environments on Fracture Behavior,” Fracture of Solids, Interscience Publishers, Inc., New York (1963), 553–605.Google Scholar
  35. 35.
    Weibull, W., “A Statistical Theory for the Strength of Materials,” Proc. Roy. Swedish Institute for Engineering Research, No. 151 (1939).Google Scholar
  36. 36.
    Weiss, V., Chait, R., and Sessler, J. G., “Fracture of Ceramics,” Proceedings of the First International Conference on Fracture, Japanese Society for Strength and Fracture of Materials, 3 (1965), 1307–1320.Google Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1968

Authors and Affiliations

  • E. N. Pugh
    • 1
  • A. J. Sedriks
    • 1
  1. 1.Research Institute for Advanced StudiesMartin Marietta CorporationBaltimoreUSA

Personalised recommendations