Surface Effects on the Mechanical Properties of Non-Metals

  • J. H. Westbrook
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 14)


Among the surface factors that affect the mechanical properties of non-metals are geometry, composition, stress, and environment—both chemical and physical. Recent findings on the influence of these factors on the properties of both crystalline and vitreous materials are reviewed. Whereas previously most effects of surface factors in non-metallics were examined in terms of the fracture process, it is now realized that the plastic deformation process can also be affected. Recent experiments have even directly demonstrated the effects of environment on dislocation mobility.


Surface Effect Surface Source Ionic Crystal Lithium Fluoride Nonmetallic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marsh, D. M., “Stress Concentration at Crystal Surfaces and the Embrittlement of Sodium Chloride,” Phil. Mag., 5 (1960), 1197.CrossRefGoogle Scholar
  2. 2.
    Stokes, R. J., Johnston, T. L. and Li, C. H., “Environmental Effects on the Mechanical Properties of Ionic Solids with Particular Reference to the Joffe Effect,” Trans. AIME, 218 (1960), 655.Google Scholar
  3. 3.
    Class, W. H., Machlin, E. S. and Murray, G. T., “Embrittlement of NaCl by Surface Compound Formation,” Trans. AIME, 221 (1961), 769.Google Scholar
  4. 4.
    Gorum, A. E., Parker, E. R. and Pask, J. A., “Effect of Surface Conditions on Room Temperature Ductility of Ionic Crystals,” J. Am. Cer. Soc, 41 (1958), 161.CrossRefGoogle Scholar
  5. 5.
    Westwood, A. R. C., “Effect of Coatings on Lithium Fluoride Crystals,” Phil. Mag., 5 (1960), 981.CrossRefGoogle Scholar
  6. 6.
    Griffith, A. A., “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc, 221A (1921), 163.CrossRefGoogle Scholar
  7. 7.
    Joffé, A. F., Kirpitschewa, M. W. and Lewitsky, M. A., “Deformation and Strength of Crystals,” Z. Physik, 22 (1924), 286.CrossRefGoogle Scholar
  8. 8.
    Davies, G. J., “On the Strength and Fracture Characteristics of Intermetallic Fibers,” Phil. Mag., 9 (1964), 953.CrossRefGoogle Scholar
  9. 9.
    Steele, B. R., Rigby, F. and Hesketh, M. C., “Investigations on the Modulus of Rupture of Sintered Alumina Bodies,” Proc. Brit. Cer. Soc, 6 (1966), 83.Google Scholar
  10. 10.
    Mallinder, F. P. and Proctor, B. A., “Preparation of High Strength Sapphire Crystals,” Proc. Brit. Cer. Soc, 6 (1966), 9.Google Scholar
  11. 11.
    Hillig, W. B., “Strength of Bulk Fused Silica,” J. Appl. Phys., 32 (1961), 741.CrossRefGoogle Scholar
  12. 12.
    Daniels, W. H. and Moore, R. E., “Fracture Behavior of a Model Brittle Solid Containing Artificial Flaws,” J. Am. Cer. Soc, 48 (1965), 274.CrossRefGoogle Scholar
  13. 13.
    Neuber, H., “Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural Form and Materials,” 199–207. Springer-Verlag. Berlin 1958. US AEC Tr. Series, AEC Tr4547.Google Scholar
  14. 14.
    Johnston, T. L., Li, C. H. and Stokes, R. J., “The Strength of Ionic Solids,” from Strengthening Mechanisms in Solids, American Society for Metals, Metals Park, Ohio (1962), 341.Google Scholar
  15. 15.
    Davies, L. M., “The Effect of Heat Treatment on the Tensile Strength of Sapphire,” Proc. Brit. Cer. Soc, 6 (1966), 29.Google Scholar
  16. 16.
    Hanneman, R. E., Finn, M. C. and Gatos, H. C., “Elastic Strain Energy Associated with the ‘A’ Surfaces of the III-V Compounds,” J. Phys. Chem. Solids, 23 (1962), 1553.CrossRefGoogle Scholar
  17. 17.
    Cahn, J. W. and Hanneman, R. E., “(111) Surface Tensions of III-V Compounds and Their Relationship to Spontaneous Bending of Thin Crystals,” Surface Science, 1 (1964), 387.CrossRefGoogle Scholar
  18. 18.
    Drum, C., “Measurements of Spontaneous Bending Attributed to Surface Stresses in Thin Crystals in Aluminum Nitride,” Phil. Mag., 13 (1966), 1239.CrossRefGoogle Scholar
  19. 19.
    Kingery, W. D., Introduction to Ceramics, J. Wiley & Sons, New York City (1960), 640.Google Scholar
  20. 20.
    Heuer, A. H., private communication.Google Scholar
  21. 21.
    Bruch, C. A., “Sintering Kinetics for the High Density Alumina Process,” Am. Cer. Soc. Bull., 41 (1962), 799.Google Scholar
  22. 22.
    Westwood, A. R. C., “Environment-Sensitive Mechanical Behavior: Status and Problems,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York City (1966), 1.Google Scholar
  23. 23.
    Gilman, J. J. and Johnston, W. G., “Observations of Glide and Climb in Lithium Fluoride Crystals,” J. Appl. Phys., 27 (1956), 1018.CrossRefGoogle Scholar
  24. 24.
    Gilman, J. J. and Johnston, W. G., “The Origin and Growth of Glide Bands in Lithium Fluoride Crystals,” Dislocations and Mechanical Properties of Crystals, John Wiley & Sons, New York City (1957), 116.Google Scholar
  25. 25.
    Stokes, R. J., Johnson, H. H. and Li, C. H., “Effect of Slip Distribution on the Fracture Behavior of Magnesium Oxide Single Crystals,” Phil. Mag., 6 (1961), 9.CrossRefGoogle Scholar
  26. 26.
    Stokes, R. J., “Dislocation Sources and the Strength of Magnesium Oxide Single Crystals,” Trans. AIME, 224 (1962), 1227.Google Scholar
  27. 27.
    Wert, C. A. and Thomson, R. M., Physics of Solids, McGraw-Hill Book Co., New York (1964).Google Scholar
  28. 28.
    Frenkel, J., Kinetic Theory of Liquids, Oxford Univ. Press, New York (1946), 36.Google Scholar
  29. 29.
    Grimley, T. B., “The Contact Between a Solid and an Electrolyte,” Proc. Roy. Soc, 201A (1950), 40.CrossRefGoogle Scholar
  30. 30.
    Lehovec, K., “Space Charge Layer and Distribution of Lattice Defects at the Surface of Ionic Crystals,” J. Chem. Phys., 21 (1953), 1123.CrossRefGoogle Scholar
  31. 31.
    Allnatt, A. P., “The Concentration of Impurities in the Surface Layers of an Ionic Crystal,” J. Phys. Chem., 68 (1964), 1763.CrossRefGoogle Scholar
  32. 32.
    Lifshits, I. M. and Geguzin, Ya E., “Surface Phenomena in Ionic Crystals,” Fiz. Tverd. Tela, 7 (1965), 62 and Sov. Phys. Solid State, 7 (1965), 44.Google Scholar
  33. 33.
    McRae, A. U. and Germer, L. H., “Interatomic Spacings at the Surface of a Clean Nickel Crystal,” Ann. N.Y. Acad. Sci., 101 (1963), 627.CrossRefGoogle Scholar
  34. 34.
    McRae, E. G. and Caldwell, C. W., Jr., “Low Energy Electron Diffraction Study of Lithium Fluoride (100) Surface,” Surface Sci., 2 (1964), 509.CrossRefGoogle Scholar
  35. 35.
    Fleischer, R. L., “Effects of Non-Uniformities on the Hardening of Crystals,” Acta Met., 8 (1960), 598.CrossRefGoogle Scholar
  36. 36.
    Leise, K. H., “On the Structural Alteration of Crystal Surfaces thru Flow Dependence of the Hardness,” Z. Physik, 124 (1948), 258.CrossRefGoogle Scholar
  37. 37.
    Mitsche, R. and Onitsch, E. M., “On the Microhardness of Minerals,” Mikroskopie, 3 (1948), 257.Google Scholar
  38. 38.
    Koval’ski, A. E. and Kanova, L. A., Zavodsk. Lab., 16 (1950), 1362.Google Scholar
  39. 39.
    Bernhardt, E. O., “On the Microhardness of Solids in the Region of the Limit of Kick’s Similarity Law,” Z. Metallkunde, 33 (1941), 135.Google Scholar
  40. 40.
    Gogoberidze, D. B. and Kopatski, N. A., Zh. Tekhn. Fiz., 20 (1950), 410.Google Scholar
  41. 41.
    Bortz, S. A., “Influence of Surface Conditions on the Strength of Ceramics,” Materials Science Research, 3. The Role of Grain Boundaries and Surfaces in Ceramics, W. W. Kriegel and H. Palmour, eds., Plenum Press, New York (1966), 539.Google Scholar
  42. 42.
    Dobson, P. S. and Wilman, H., “The Reorientation caused by Unidirectional Abrasion on Materials of Rock-Salt Structure Type,” Acta Cryst., 15 (1962), 794–9.CrossRefGoogle Scholar
  43. 43.
    Dobson, P. S. and Wilman, H., “The Reorientation caused by Unidirectional Abrasion on Materials of CsCl Structure Type,” Ada Cryst., 15 (1962), 800–3.CrossRefGoogle Scholar
  44. 44.
    Boyarskaya, Yu. S., “Investigation of Microhardness Anisotropy of Sodium Chloride and Potassium Chloride Crystals by the Scratching Method,” Uchenye Zapiski Kishinev. U., 17 (1955), 159, see Chem. Abstr. 52 (1958), 2490e.Google Scholar
  45. 45.
    Boyarskaya, Yu. S., “Study of the Anisotropy in the Hardness of Lead Sulfide Monocrystals by the Abrasion Method,” Kristallographia, 2 (1957), 709.Google Scholar
  46. 46.
    Aerts, E., Amelinckx, S., and Dekeyser, W., “The Surface Hardening of X-irradiated NaCl,” Acta Met. 7 (1959) 29.CrossRefGoogle Scholar
  47. 47.
    Haasen, P., “On the Plasticity of Germanium and Indium Antimonide,” Acta Met, 5 (1957), 598.CrossRefGoogle Scholar
  48. 48.
    Peissker, E., Haasen, P. and Alexander, H., “Anisotropie Plastic Deformation of Indium Antimonide,” Phil. Mag., 7 (1962), 1279.CrossRefGoogle Scholar
  49. 49.
    Hanneman, R. E., Private communication.Google Scholar
  50. 50.
    Birchenall, C. E. and Eisen, F. H., “Self Diffusion in Indium Antimonide and Gallium Antimonide,” Ada Met., 5 (1957), 265.CrossRefGoogle Scholar
  51. 51.
    Bell, R. L. and Willoughby, A. F. W., “Etch-Pit Studies of Dislocations in Indium Antimonide,” J. Matls. Sci., 1 (1966), 219.CrossRefGoogle Scholar
  52. 52.
    Kear, B. H. and Pratt, P. L., “Quench Hardening in Sodium Chloride Crystals,” Phil. Mag., 4 (1959), 56.CrossRefGoogle Scholar
  53. 53.
    Aust, K. T., Peat, A. J., and Westbrook, J. H., “Quench-Hardening Gradients Near Vacancy Sinks in Crystals of Zone-Refined Lead,” Acta Met., 14 (1966), 1469.CrossRefGoogle Scholar
  54. 54.
    Aust, K. T. and Westbrook, J. H., “Effect of Quenching on Grain Boundary Hardening in Dilute Lead-Gold Alloys,” from Lattice Defects in Quenched Metals, R. M. J. Cotterill et al., eds., Academic Press, New York, 1965.Google Scholar
  55. 55.
    Aust, K. T., Niessen, P., Hanneman, R. E., and Westbrook, J. H., “Solute-Induced Hardening Near Grain Boundaries in Zone Refined Metals,” Acta Met., 16 (1968) 291.CrossRefGoogle Scholar
  56. 56.
    Sakka, S., “Effect of Reheating on the Strength of Glass Fibers,” J. Ceram. Assoc. Japan, 65 (1957), 190.CrossRefGoogle Scholar
  57. 57.
    Thomas, W. F., “An Investigation of the Factors Likely to Affect the Strength and Properties of Glass Fibers,” Phys. Chem. Glasses, 1 (1960), 4.Google Scholar
  58. 58.
    Brearley, W. and Holloway, D. G., “Effect of Heat Treatment on the Breaking Strength of Glass,” Phys. Chem. Glasses, 4 (1963), 69.Google Scholar
  59. 59.
    Cameron, N. M., “Effect of Prior Heat Treatment on the Strength of Glass Fibers Measured at Room Temperature,” J. Am. Cer. Soc, 48 (1965), 385.CrossRefGoogle Scholar
  60. 60.
    Vitman, F. F., Masterova, M. V. and Pukh, V. P., “Influence of Temperature on the Strength of Etched Quartz Glass in its High-Strength State,” Sov. Phys. Solid State, 8 (1966), 1195.Google Scholar
  61. 61.
    Gibbs, J. W., Collected Works, Yale U. Press, New Haven, Conn. (1948).Google Scholar
  62. 62.
    McLean, D., Grain Boundaries in Metals, Oxford U. Press (1957)Google Scholar
  63. 63.
    Westbrook, J. H., “Segregation at Grain Boundaries,” Met. Revs., 9 (1964), 415.Google Scholar
  64. 64.
    Johnson, R. P., “A Note on the Hole Theory of Diffusion,” Phys. Rev., 56 (1939), 814.CrossRefGoogle Scholar
  65. 65.
    Westbrook, J. H., “Impurity Effects at Grain Boundaries in Ceramics,” Science in Ceramics, 3 (1967), 263.Google Scholar
  66. 66.
    Jorgensen, P. J. and Anderson, R. C., “Grain Boundary Segregation and Final Stage Sintering of Y2O3,” J. Am. Cer. Soc, 50 (1967), 553.CrossRefGoogle Scholar
  67. 67.
    Fellows, B. T. and Sterry, J. P., “Polycrystalline Ceramic Fibers,” presented at Philadelphia Meeting, Am. Cer. Soc. (April 1965).Google Scholar
  68. 68.
    Westbrook, J. H. and Peat, A. J., unpublished research.Google Scholar
  69. 69.
    Warshaw, S. I., “Pre-stressed Ceramics,” Bull. Am. Cer. Soc, 36 (1957), 28.Google Scholar
  70. 70.
    Kirchener, H. P. and Gruner, R. M., “Chemical Strengthening of Polycrystalline Ceramics,” J. Am. Cer. Soc, 49 (1966), 330.CrossRefGoogle Scholar
  71. 71.
    Kirchener, H. P., Gruner, R. M. and Walker, R. E., “Chemically Strengthened, Leached Alumina and Spinel,” J. Am. Cer. Soc, 50 (1967), 169.CrossRefGoogle Scholar
  72. 72.
    Stookey, S. D., “Strengthening Glass and Glass-Ceramics by Built-in Surface Compression,” from High Strength Materials, V. F. Zackay, ed., John Wiley & Sons, New York City (1965), 724.Google Scholar
  73. 73.
    Kistler, S. S., “Stresses in Glass Produced by Nonuniform Exchange of Monovalent Ions,” J. Am. Cer. Soc, 45 (1962), 59.CrossRefGoogle Scholar
  74. 74.
    Kerper, M. J. and Scuderi, T. G., “Mechanical Properties of Chemically Strengthened Glasses at High Temperatures,” J. Am. Cer. Soc, 49 (1966), 613.CrossRefGoogle Scholar
  75. 75.
    Schott, O., German Patent 61573 (1892).Google Scholar
  76. 76.
    Bettany, C. and Webb, H. W., “Some Physical Effects of Glazes, I,” Trans. Brit. Cer. Soc., 39 (1940), 312.Google Scholar
  77. 77.
    Gorum, A. E. and Moberly, J. W., “Effect of Surface Layers on Mechanical Characteristics of MgO,” J. Am. Cer. Soc., 45 (1962), 316.CrossRefGoogle Scholar
  78. 78.
    Westbrook, J. H., “The Thermal Shock Resistance of Metallized Ceramics,” ScD. thesis, M.I.T. (1949).Google Scholar
  79. 79.
    Otterson, D. A., “Influence of Room-Temperature Atmospheric Reaction Products on the Ductility of Sodium Chloride Crystals,” J. Chem. Phys., 38 (1963), 1481.CrossRefGoogle Scholar
  80. 80.
    Mendelson, S., “Surfaces in Plastic Flow of NaCl Single Crystals,” J. Appl. Phys., 33 (1962), 2182.CrossRefGoogle Scholar
  81. 81.
    Silvestrovich, C. I. and Boguslavski, I. A., “Application of Silico-Organic Compounds for Improving the Properties of Glass,” Steklo i Keramika, 17 (1960), 7.Google Scholar
  82. 82.
    King, A. G., “Chemical Polish and the Strength of Alumina,” Materials Science Research, 3, The Role of Grain Boundaries and Surfaces in Ceramics, W. W. Kriegel and H. Palmour, eds., Plenum Press, New York (1966), 529.Google Scholar
  83. 83.
    Schmid, E. and Boas, W., Crystal Plasticity, Springer, Berlin, (1936).Google Scholar
  84. 84.
    Vaughan, W. H. and Davisson, J. W., “Surface Mobility of Dislocations and the Joffe Effect,” Report of NRL Progress (April 1959), 5.Google Scholar
  85. 85.
    Westbrook, J. H. and Jorgensen, P. J., “Indentation Creep of Solids,” Trans. AIME, 233 (1965), 425.Google Scholar
  86. 86.
    Westbrook, J. H., “Some Effects of Adsorbed Water on the Plastic Deformation on Non-Metallic Solids,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 247.Google Scholar
  87. 87.
    Hanneman, R. E. and Westbrook, J. H., “Effects of Adsorption on the Indentation Deformation of Non-Metallic Solids,” Phil. Mag., 18 (1968) 73.CrossRefGoogle Scholar
  88. 88.
    Westbrook, J. H. and Jorgensen, P. J., “Effects of Adsorbed Water on Indentation Hardness Anisotropy in Crystals,” Anisotropy in Single-Crystal Refractory Compounds, F. W. Vahldiek and S. A. Mersol, eds., Plenum Press, New York (1968) v. 2, p. 353.Google Scholar
  89. 89.
    Westwood, A. R. C., Goldheim, D. L. and Pugh, E. N., “Complex-Ion Embrittlement of Silver Chloride,” Materials Sci. Res., 3, The Role of Grain Boundaries and Surfaces in Ceramics, W. W. Kriegel and H. Palmour, eds., Plenum Press, New York (1966), 553.Google Scholar
  90. 90.
    Westwood, A. R. C., Goldheim, D. L. and Pugh, E. N., “A Double-layer Mechanism for the Complex-ion Embrittlement of Silver Chloride,” Phil. Mag., 15 (1967), 105.CrossRefGoogle Scholar
  91. 91.
    Westwood, A. R. C., Goldheim, D. L. and Lye, R. G., “Rehbinder Effects in MgO,” Phil. Mag., (1967), 505.Google Scholar
  92. 92.
    Westwood, A. R. C., “The Rehbinder Effect and the Adsorption Locking of Dislocations in Lithium Fluoride,” Phil. Mag., 7 (1962), 633.CrossRefGoogle Scholar
  93. 93.
    Grosskreutz, J. C., “The Effect of Oxide Films on Dislocation-Surface Interactions in Aluminum,” Surface Sci., 8 (1967), 173.CrossRefGoogle Scholar
  94. 94.
    Sproull, R. L., “Charged Dislocations in Lithium Fluoride,” Phil. Mag., 5 (1960), 815.CrossRefGoogle Scholar
  95. 95.
    Bradhurst, D. H. and Leach, J. S. L., “Mechanical Properties of Anodic Films on Aluminum,” Trans, Brit. Cer. Soc, 62 (1963), 793.Google Scholar
  96. 96.
    Leach, J. S. L., and Neufeld, P., “The Influence of Electric Field on the Mechanical Properties of Surface Oxide Layers,” Proc. Brit. Cer. Soc, 6 (1966), 49.Google Scholar
  97. 97.
    Westbrook, J. H. and Gilman, J. J., “An Electromechanical Effect in Semiconductors,” J. Appl. Phys., 33 (1962), 2360.CrossRefGoogle Scholar
  98. 98.
    Ablova, M. S., “Electromechanical Effect in Ge, Si and InSb,” Fiz. Tver. Tela, 6 (1964), 3159 Sov. Phys. Solid State, 6 (1965), 2520.Google Scholar
  99. 99.
    Jorgensen, P. and Hanneman, R. E., “On the Existence of Photomechanical and Electromechanical Effects in Semiconductors,” J. Appl. Phys., 38 (1965), 4099.Google Scholar
  100. 100.
    Machlin, E. S., “Applied Voltage and the Plastic Properties of ‘Brittle’ Rock Salt,” J. Appl. Phys., 30 (1959), 1109.CrossRefGoogle Scholar
  101. 101.
    Kuczynski, G. C. and Hochman, R. F., “Light-Induced Plasticity in Semiconductors,” Phys. Rev., 108 (1957), 946.CrossRefGoogle Scholar
  102. 102.
    Goridko, N. Ya., Kuzmenko, P. P. and Novikov, N. N., “The Change of Mechanical Properties of Germanium with Changing Concentration of Current Carriers,” Fiz. Tver. Tela, 3 (1961), 3650, Sov. Phys. Solid State, 3 (1962), 2652.Google Scholar
  103. 103.
    Holt, D. B., “Photo-and Electro-Mechanical Effects in Semiconductors,” Environment-Sensitive Mechanical Behavior, Westwood and Stoloff, eds., Gordon and Breach, New York (1966), 269.Google Scholar
  104. 104.
    Gross, G. E. and Gutshall, P. L., “Evidence of a Dislocation Feeding Mechanism for Crack Re-initiation in F-Colored NaCl,” Int. J. Frac. Mech., 1 (1965), 131.Google Scholar
  105. 105.
    Joffe, A. M., The Physics of Crystals, McGraw-Hill, New York (1928).Google Scholar
  106. 106.
    Rehbinder, P. A., “Reduction of Hardness by Adsorption Scelerometry and the Physics of Dispersed Systems,” Proc. 6th Phys. Conf., Moscow (1928). See also Z. Physik, 72 (1931), 191.Google Scholar
  107. 107.
    Likhtman, V. I., Rehbinder, P. A., and Karpenko, G. V., Effect of a Surface Active Medium on the Deformation of Metals, Moscow (1954), English translation by HMSO, London (1958).Google Scholar
  108. 108.
    Rehbinder, P. and Likhtman, V., “Effect of Surface Active Media on Strains and Rupture in Solids,” Proc. 2nd International Congress on Surface Activity (1958), 503.Google Scholar
  109. 109.
    Likhtman, V. I., Shchukin, E. D. and Rehbinder, P. A., Physicochemical Mechanics of Metals, Moscow (1962). English translation by Israel Progr. for Sci. Transi., Jerusalem (1964).Google Scholar
  110. 110.
    Grenet, L., “Mechanical Strength of Glass,” Bull. Soc. Encour. Ind. Mat, 4 (1899), 839.Google Scholar
  111. 111.
    Mould, R. E., “Strength and Static Fatigue in Glass,” Glastech. Ber. (V Int. Glaskongr.), 32K (1959), 111–18.Google Scholar
  112. 112.
    Roberts, J. P. and Watt, W., “Mechanical Properties of Sintered Alumina,” Ceram. Glass, 10 (1952), 53.Google Scholar
  113. 113.
    Charles, R. J., “The Strength of Silicate Glasses and Some Crystalline Oxides,” from Fracture, John Wiley & Sons, New York (1959), 225.Google Scholar
  114. 114.
    Charles, R. J. and Shaw, R. R., “Delayed Failure of Polycrystalline and Single Crystal Alumina,” General Electric Report 62-RL-3081M (1962).Google Scholar
  115. 115.
    Hillig, W. B. and Charles, R. J., “Surfaces, Stress-Dependent Surface Reactions and Strength,” from High Strength Materials, John Wiley & Sons, New York (1965), 682.Google Scholar
  116. 116.
    Wiederhorn, S. M., “The Influence of Water Vapor on Crack Propagation in Soda-Lime Glass,” J. Am. Cer. Soc, 50 (1967), 407.CrossRefGoogle Scholar
  117. 117.
    Fitzer, E., “Molybdenum Disilicide as a High Temperature Material,” Plansee Proc, 1955, F. Benesovsky, ed., Pergamon Press, London (1956).Google Scholar
  118. 118.
    Westbrook, J. H. and Wood, D. L., “‘Pest’ Degradation in Beryllides, Suicides, Aluminides, and Related Compounds,” J. Nucl. Mails., 12 (1964) 208.CrossRefGoogle Scholar
  119. 119.
    Berkowitz-Mattuck, J. B., Blackburn, P. E., and Feiten, E. J., “The Intermediate-Temperature Oxidation Behavior of Molybdenum Disilicide,” Trans. AIME, 233 (1965), 1093.Google Scholar
  120. 120.
    Turner, P. A., Pascoe, R. T. and Newey, C. W. A., “Grain Boundary ‘Pest’ in NiAl,” J. Mat. Sci., 1 (1966), 113.CrossRefGoogle Scholar
  121. 121.
    Seybolt, A. U. and Westbrook, J. H., “Oxygen-Induced Grain Boundary Hardening in the Intermetallic Compounds AgMg, NiGa, and NiAl,” Plansee Proc. (1964), 845.Google Scholar
  122. 122.
    Ban, Z. and Ogilvie, R. E., “The Role of Iron in the Oxidation of Molybdenum Disilicide,” Trans. AIME, 236 (1966), 1738.Google Scholar
  123. 123.
    Metz, F. I., Schweiger, R. N., Leider, H. R. and Girifalco, L. A., “Stress Activated Luminescence in X-irradiated Alkali Halide Crystals,” J. Phys. Chem., 61 (1957), 86.CrossRefGoogle Scholar
  124. 124.
    Dupuy, C. and Schaeffer, B., “Influence of Color Centers on the Plastic Deformation of Halide Crystals,” Proc. Brit. Cer. Soc, 6 (1966), 257.Google Scholar
  125. 125.
    Amelinckx, S., “Dislocations in Ionic Crystals: II Electrical Effects during Cyclic Straining of Sodium Chloride,” Mechanical Properties of Engineering Ceramics, Kriegel and Palmour, eds. Interscience, New York (1961), 35.Google Scholar
  126. 126.
    Vernik, J., Remourt, G. and Dekeyser, W., “Observations on Charged Dislocations in Ionic Crystals,” Phil. Mag., 6 (1961), 997.CrossRefGoogle Scholar
  127. 127.
    Rueda, F. and Dekeyser, W., “Charged Dislocations in Pure and Doped Rocksalt Single Crystals,” Acta Met., 11 (1963), 35.CrossRefGoogle Scholar
  128. 128.
    Davidge, R. W., “The Sign of Charged Dislocations in NaCl,” Phil. Mag., 8 (1963), 1369.CrossRefGoogle Scholar
  129. 129.
    Kishsh, I., “Study of Electric Effects Arising in Local Deformations of NaCl Crystals,” Soviet Phys. Crystallog., 10 (1966), 740.Google Scholar
  130. 130.
    Pearson, T. L. and Feldmann, W. L., “Powder-Pattern Techniques for Delineating Ferroelectric Domain Structures,” J. Phys. Chem. Solids, 9 (1958), 28.CrossRefGoogle Scholar
  131. 131.
    Saucier, H. and Dupuy, C., “Depiction of the Electric Charge Along Slip Planes in Ionic Crystals,” Compt. Rend. Acad. Sci. Paris, 252 (1961), 1039.Google Scholar
  132. 132.
    Camagni, P. and Manara, A., “Steady State Excess Conductivity During Plastic Deformation of Alkali Halides,” J. Phys. Chem. Solids, 26 (1965), 449.CrossRefGoogle Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1968

Authors and Affiliations

  • J. H. Westbrook
    • 1
  1. 1.General Electric Research & Development CenterSchenectadyUSA

Personalised recommendations