Segregation at Interphase Boundaries

  • G. Bruggeman
  • E. B. Kula
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 14)


The nature of interphase boundaries is described and various methods by which interface segregation can occur are discussed. Almost all the work on equilibrium segregation has been done on single-phase materials with little attention being paid to poly-phase structures. Those aspects of interface segregation which are common to both types of microstructures are considered. Segregation ahead of a moving interface during a phase transformation is commonly found, where the rate of movement of the interface is controlled by diffusion of solute away from the interface. Less commonly, segregation at relatively stationary interfaces occurs during the partitioning of solute elements which are incapable of sufficient diffusion during the initial establishment of the position of the phase boundary. Mechanisms by which these methods of segregation lead to embrittlement of steels are suggested with particular emphasis on temper embrittlement and tempered martensite (500°F) embrittlement.


Solute Atom Interphase Boundary Boundary Energy Boundary Segregation Temper Embrittlement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandon, D. G., Ralph, B., Ranganathan, S., and Wald, M. S., “A Field Ion Microscope Study of Atomic Configuration at Grain Boundaries,” Acta Met, 12 (1964), 813.CrossRefGoogle Scholar
  2. 2.
    Stein, D. F., “Requirements for the Measurements of Grain Boundary Segregation by Autoradiography,” Trans. Met. Soc. AIME, 239 (1967), 1721.Google Scholar
  3. 3.
    Westbrook, J. H., “Segregation at Grain Boundaries,” Met. Rev., 9 (1964), 415.Google Scholar
  4. 4.
    McLean, D., “The Embrittlement of Copper-Antimony Alloys at Low Temperatures,” J. Inst. Met., 81 (1952–53), 121.Google Scholar
  5. 5.
    Westbrook, J. H. and Aust, K. T., “Solute Hardening at Interfaces in High-Purity Lead. I. Grain and Twin Boundaries,” Acta Met., 11 (1963), 1151.CrossRefGoogle Scholar
  6. Aust, K. T., Hanneman, R. E., Niessen, P. and Westbrook, J. H., “Solute-Induced Hardening Near Grain Boundaries in Zone-Refined Metals,” Acta Met, 16 (1968), 291.CrossRefGoogle Scholar
  7. 6.
    Cottrell, A. H., “Theory of Brittle Fracture in Steel and Similar Metals,” Trans. AIME, 212 (1958), 192.Google Scholar
  8. 7.
    Tetelman, A. S., and McEvily, A. J., “Fracture of Structural Materials,” John Wiley and Sons, Inc., New York (1967), 264.Google Scholar
  9. 8.
    For example, Holmes, E. L. and Winegard, W. C., “Grain Growth in Zone-Refined Tin,” Acta Met., 7 (1959), 411.CrossRefGoogle Scholar
  10. 9.
    Ransley, C. E., and Talbot, D. E. J., “The Embrittlement of Aluminum-Magnesium Alloys by Sodium,” J. Inst. Met., 88 (1959–60), 150.Google Scholar
  11. 10.
    Hilliard, J. E., Cohen, M. and Averbach, B. L., “Grain-Boundary Energies in Gold-Copper Alloys,” Acta Met., 8 (1960), 26.CrossRefGoogle Scholar
  12. 11.
    Inman, M. C., McLean, D., and Tipler, H. R., “Interfacial Free Energy of Copper-Antimony Alloys,” Proc. Roy. Soc. (London), 273A (1963), 538.Google Scholar
  13. 12.
    Inman, M. C., and Quigley, D., “A Radiotracer Method for Measuring Surface Segregation in Alloys,” J. Inst. Met., 90 (1961–62), 51.Google Scholar
  14. 13.
    Inman, M. C. and Tipler, H. R., “Grain-Boundary Segregation of Phosphorus in an Iron-Phosphorus Alloy and the Effect upon Mechanical Properties,” Acta Met, 6 (1958), 73.CrossRefGoogle Scholar
  15. 14.
    Cahn, J. W., and Hilliard, J. E., “On the Equilibrium Segregation at a Grain Boundary,” Acta Met., 7 (1959), 219.CrossRefGoogle Scholar
  16. 15.
    Kaufman, S. M., “Origins of Surface Tension Extrema in Metallic Solutions,” Acta Met., 15 (1967), 1089.CrossRefGoogle Scholar
  17. 16.
    Kinsman, K. R. and Shyne, J. C., “The Thermal Stabilization of Austenite,” Ada Met. 14 (1966), 1063.CrossRefGoogle Scholar
  18. 17.
    Westbrook, J. H. and Wood, D. L., “A Source of Grain-Boundary Embrittlement in Intermetallics,” J. Inst. Met., 91 (1962–63), 174.Google Scholar
  19. 18.
    Ono, S., “Statistical Thermodynamics of Critical and Surface Phenomena,” Memoirs of the Faculty of Engineering, Kyushu Imperial University, 10 (1947), 195.Google Scholar
  20. 19.
    Hillert, M., “A Solid-Solution Model for Inhomogeneous Systems,” Acta Met., 9 (1961), 525.CrossRefGoogle Scholar
  21. 20.
    Cahn, J. W. and Hilliard, J. E., “Free Energy of a Nonuniform System. I. Interfacial Free Energy,” J. Chem. Phys., 28 (1958), 258.CrossRefGoogle Scholar
  22. 21.
    Meijering, J. L., “Concentrations at Interfaces in Binary Alloys,” Acta Met, 14 (1966), 251.CrossRefGoogle Scholar
  23. 22.
    Low, J., “Temper Brittleness—A Review of Recent Work,” Fracture of Engineering Materials, American Society for Metals, Metals Park, Ohio (1964), 127.Google Scholar
  24. 23.
    Steven, W. and Balajiva, K., “The Influence of Minor Elements on the Isothermal Embrittlement of Steels,” J. Iron and Steel Inst., 193 (1959), 141.Google Scholar
  25. 24.
    Restaino, P. A. and McMahon, C. J., “Temper Embrittlement of Steel,” Trans. ASM, 60 (1967), 699.Google Scholar
  26. 25.
    Low, J. R., Stein, D. F., Turkalo, A. M. and LaForce, R. P., “Alloy and Impurity Effects on Temper Brittleness of Steel,” Trans. Met. Soc. AIME, 242 (1968), 14.Google Scholar
  27. 26.
    Arkharov, V. I., Ivanovskaya, S. I., Kolesnikova, N. M. and Fofanova, T. A., “Mechanism of the Effect of Phosphorus and Molybdenum Content on Temper Brittleness of Steel,” Fizika Metallov i Metallovedenie, 2, no. 1 (1956), 57.Google Scholar
  28. 27.
    Bruggeman, G. and Roberts, J., “Diffusion of Antimony in Iron and an Iron-0.5% Molybdenum Alloy,” to be published.Google Scholar
  29. 28.
    Hillert, M., Cohen, M. and Averbach, B. L., “Formation of Modulated Structures in Copper-Nickel-Iron Alloys,” Acta Met., 9 (1961), 536.CrossRefGoogle Scholar
  30. 29.
    Carr, F. L., Goldman, M., Jaffe, L. D. and Buffum, D. C., “Isothermal Temper Embrittlement of SAE 3140 Steel,” Trans. AIME, 197 (1953), 998.Google Scholar
  31. 30.
    Darken, L. S., “Diffusion of Carbon in Austenite with a Discontinuity in Composition,” Trans. AIME, 180 (1949), 430.Google Scholar
  32. 31.
    Hultgren, A. and Collaborators., “Isothermal Transformation of Austenite and Partitioning of Alloying Elements in Low Alloy Steels,” Kungl. Svenska Vetenskapsakademiens Handlingar, Fourth Series, 4, no. 3, Almqvist and Wiksells Boktryckeri AB, Stockholm (1953); also “Isoterm Omvandling av Austenit,” Jernkontorets Annaler, 135 (1951), 403.Google Scholar
  33. 32.
    Knapp, H. and Dehlinger, U., “Mechanik und Kinetik der Diffusionslosen Martensitbildung,” Acta Met., 4 (1956), 289.CrossRefGoogle Scholar
  34. 33.
    Kinsman, K. R. and Shyne, J. C., “Thermal Stabilization of Austenite in Iron-Nickel-Carbon Alloys,” Acta Met., 15 (1967), 1527.CrossRefGoogle Scholar
  35. 34.
    Ainslie, N. G., Phillips, V. A. and Turnbull, D., “Sulfur Segregation at α-Iron Grain Boundaries—II,” Acta Met., 8 (1960), 528.CrossRefGoogle Scholar
  36. 35.
    Danko, J. C. and Stout, R. D., “The Effect of Subboundaries and Carbide Distribution on the Notch Toughness of an Ingot Iron,” Trans. ASM, 49 (1957), 189.Google Scholar
  37. 36.
    Guy, A. G., Leroy, V. and Lindemer, T. B., “Diffusion Calculations in Three-Component Solid Solutions,” Trans. ASM, 59 (1966), 517.Google Scholar
  38. 37.
    Kula, E. B. and Anctil, A. A., “Tempered Martensite Embrittlement and Fracture Toughness in 4340 Steel,” Army Materials and Mechanics Research Center, AMRA TR 67-03 (January 1967); also “The Mechanism of Tempered Martensite Embrittlement in Steel,” Abstract Bull, of the Inst. Met. Div., The Met. Soc. of AIME, 2, no. 1 (1967), 98.Google Scholar
  39. 38.
    Capus, J. M. and Mayer, G., “The Influence of Trace Elements on Embrittlement Phenomena in Low-Alloy Steels,” Metallurgia, 62 (1960), 133.Google Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1968

Authors and Affiliations

  • G. Bruggeman
    • 1
  • E. B. Kula
    • 1
  1. 1.Army Materials and Mechanics Research CenterWatertownUSA

Personalised recommendations