Surfaces and Interfaces in Materials Technology

  • A. R. C. Westwood
  • R. G. Lye
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 14)


Surfaces and interfaces are involved in many aspects of engineering technology. Of particular interest to materials scientists are those aspects in which phenomena occurring at external or internal surfaces determine mechanical behavior, or electronic properties. In this paper, factors involved in some of these effects, and in such important surface phenomena as friction, lubrication and wear, sintering, welding and adhesion, are reviewed and briefly discussed.


Weld Metal Material Technology Fatigue Strength Porous Metal Liquid Metal Embrittlement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Volkenstein, F. F., “Electronic Processes at the Surface of a Semiconductor During Chemisorption,” Soviet Physics Uspehki, 9 (1967), 743.CrossRefGoogle Scholar
  2. 2.
    Gomer, R., “Surface Phenomena-The Nature and Properties of Solid Surfaces and Interfaces,” Perspectives in Materials Research, Office of Naval Research, Washington (1963), 498.Google Scholar
  3. 3.
    Bardeen, J. and Brattain, W. H., “Physical Principles Involved in Transistor Actions,” Phys. Rev., 75 (1949), 1208.CrossRefGoogle Scholar
  4. 4.
    Environment-Sensitive Mechanical Behavior, ed. Westwood, A. R. C. and Stoloff, N. S., Gordon and Breach, New York (1966).Google Scholar
  5. 5.
    Stokes, R. J., Johnston, T. L. and Li, C. H., “Effect of Slip Distribution on the Fracture Behavior of Magnesium Oxide Single Crystals,” Phil. Mag., 6 (1961), 9.CrossRefGoogle Scholar
  6. 6.
    Westwood, A. R. C., “On the Fracture Behavior of MgO Bicrystals,” Phil. Mag., 6 (1961), 195.CrossRefGoogle Scholar
  7. 7.
    Ku, R. C. and Johnston, T. L., “Fracture Strength of MgO Crystals,” Phil. Mag., 9 (1964), 231.CrossRefGoogle Scholar
  8. 8.
    Worzala, F. J. and Robinson, W. H., “Surface Dislocation Sources and Plastic Flow in Silver Monocrystals,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 183.Google Scholar
  9. 9.
    Grosskreutz, J. C. and Bowles, C. Q., “Effect of Environmental Gases on the Surface Deformation of Aluminum and Gold in Fatigue,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 67.Google Scholar
  10. 10.
    Worthington, P. J. and Smith, E., “The Formation of Slip Bands in Polycrystalline 3% Silicon Iron in the Pre-Yield Microstrain Region,” Acta Met., 12 (1964), 1277.CrossRefGoogle Scholar
  11. 11.
    Epsey, G. B., Jones, M. H. and Brown, W. F., “A Preliminary Report on Sharp Notch and Smooth Tensile Characteristics for a Number of Ultra High Strength Sheet Alloys,” Proc. ASTM, 59 (1959), 837.Google Scholar
  12. 12.
    Westwood, A. R. C., “Introduction to the Surface-Sensitive Mechanical Behavior of Materials,” Ind. and Eng. Chem., 56 (1964), 14.CrossRefGoogle Scholar
  13. 13.
    Fourdeaux, A. and Wronski, A., “New Electrolytic Method for Cutting and Shaping Metal Specimens,” Brit. J. Appl. Phys., 14 (1963), 218.CrossRefGoogle Scholar
  14. 14.
    Ward, W. V., Jacobson, M. L. and Mathews, C. O., “Effect of Surface Finish on Properties of Beryllium Sheet,” Trans. ASM, 54 (1961), 84.Google Scholar
  15. 15.
    Davidenkov, N. N. and Efimova, I. S., “Influence of Surface Condition on Cold Brittleness,” Soviet Physics-Solid State, 1 (1960), 1389.Google Scholar
  16. 16.
    Breidt, P. J., Hobstetter, J. N. and Ellis, W. C., “Some Effects of Environment on Fracture Stress of Germanium,” J. Appl. Phys., 29 (1958), 226.CrossRefGoogle Scholar
  17. 17.
    Pugh, E. N., Westwood, A. R. C. and Hitch, T. T., “Effects of Liquid Metals on the Fracture Strength of Germanium Monocrystals,” Phys. Stat. Solidi, 15 (1966), 291.CrossRefGoogle Scholar
  18. 18.
    Mock, J. A., “Coatings and Finishes,” Mat. in Design Engineering, January (1966), 88.Google Scholar
  19. 19.
    Zimmel, L. J., “An Analysis of the Effects of ECM on the Fatigue of 403 SS,” presented at Nat. Aeronautic and Space Eng. Meeting, Los Angeles, October (1964).Google Scholar
  20. 20.
    Pugh, E. N., “On the Mechanism(s) of Stress-Corrosion Cracking,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 351.Google Scholar
  21. 21.
    Graf, L., “Stress Corrosion Cracking in Homogeneous Alloys,” Stress Corrosion Cracking and Embrittlement, John Wiley, New York (1956), 48.Google Scholar
  22. 22.
    Forty, A. J. and Humble, P., “Influence of Surface Tarnishing on the Stress-Corrosion of a-Brass,” Phil. Mag., 8 (1963), 247.CrossRefGoogle Scholar
  23. 23.
    McEvily, A. J. and Bond, A. P., “On the Initiation and Growth of Stress Corrosion Cracks in Tarnished Brass,” J. Electrochem. Soc, 112 (1965), 131.CrossRefGoogle Scholar
  24. 24.
    Pugh, E. N. and Westwood, A. R. C., “Complex-Ions and the Stress-Corrosion Cracking of α-Brass,” Phil. Mag., 13 (1966), 167.CrossRefGoogle Scholar
  25. 25.
    Sedriks, A. J., “Structure of Tarnish Films on Stress Corrosion Fracture Surfaces of Ti-5% Al-2.57% Sn Alloy Tested in Nitrogen Tetroxide,” Trans. Met. Soc. AIME, 239 (1967), 916.Google Scholar
  26. 26.
    Pugh, E. N., Montague, W. M. and Westwood, A. R. C., “Stress-Corrosion Cracking of Copper,” Corrosion Sci., 6 (1966), 345.CrossRefGoogle Scholar
  27. 27.
    Hanna, G. L., Troiano, A. R. and Steigerwald, E. A., “A Mechanism for the Embrittlement of High-Strength Steels by Aqueous Environments,” Trans. ASM, 57 (1964), 658.Google Scholar
  28. 28.
    Sedriks, A. J., Slattery, P. W. and Pugh, E. N., “Stress-Corrosion Cracking of α-Titanium in Non-Aqueous Environments,” Proc. Int. Conf. on Stress-Corrosion Cracking, Columbus, Ohio, September (1967), to be published.Google Scholar
  29. 29.
    Brattain, W. H., “Introduction to the Physics and Chemistry of Surfaces,” The Surface Chemistry of Metals and Semiconductors, John Wiley, New York (1959), 9.Google Scholar
  30. 30.
    Westwood, A. R. C., Preece, C. M. and Kamdar, M. H., “Application of Crack Propagation Criterion to Liquid Metal Embrittlement; Cleavage of Aluminum in Liquid Gallium,” Trans. ASM, 60 (1967), 723.Google Scholar
  31. 31.
    Westwood, A. R. C. and Kamdar, M. H., “Concerning Liquid-Metal Embrittlement, Particularly of Zinc Monocrystals by Mercury,” Phil. Mag., 8 (1963), 787.CrossRefGoogle Scholar
  32. 32.
    Stoloff, N. S. and Johnston, T. L., “Crack Propagation in a Liquid Metal Environment,” Acta Met., 11 (1963), 251.CrossRefGoogle Scholar
  33. 33.
    Likhtman, V. I. and Shchukin, E. D., “Physico-Chemical Phenomena in the Deformation of Metals,” Soviet Physics Uspekhi, 1 (1958), 91.CrossRefGoogle Scholar
  34. 34.
    Kelly, A., Tyson, W. R. and Cottrell, A. H., “Ductile and Brittle Crystals,” Phil. Mag., 15 (1967), 567.CrossRefGoogle Scholar
  35. 35.
    Douglass, R. W., Krier, C. A. and Jaffee, R. I., “High Temperature Properties and Alloying Behavior of Refractory Platinum Group Metals,” Battelle Memorial Inst. Rept. (AD 265-624), August (1961).Google Scholar
  36. 36.
    Westwood, A. R. C., Goldheim, D. L. and Pugh, E. N., “A Double-Layer Mechanism for the Complex-Ion Embrittlement of AgCl,” Phil. Mag., 15 (1967), 105.CrossRefGoogle Scholar
  37. 37.
    Westwood, A. R. C., Goldheim, D. L. and Lye, R. G., “Rebinder-Effects in MgO,” Phil. Mag., 16 (1967), 505.CrossRefGoogle Scholar
  38. 38.
    Rebinder, P. A., Schreiner, L. A. and Zhigach, K. F., Hardness Reducers in Drilling, C.S.I.R.O., Melbourne (1948), 1.Google Scholar
  39. 39.
    Johnston, W. G., “Effect of Impurities on the Flow Stress of LiF Crystals,” J. Appl. Phys., 33 (1962), 2050.CrossRefGoogle Scholar
  40. 40.
    Pratt, P. L., Chang, R. and Newey, C. W., “Effect of Divalent Metal Impurity Distribution, Quenching Rate, and Annealing Temperature on Flow Stress of Ionic Crystals,” Appl. Phys. Letters, 3, No. 5 (1963), 83.CrossRefGoogle Scholar
  41. 41.
    Mark, P., “Chemisorption and Trapping on Insulator Surfaces,” Trans. N.Y. Acad. of Sci., 27 (1965), 946.CrossRefGoogle Scholar
  42. 42.
    Likhtman, V.I., Rehbinder, P. A. and Karpenko, G. V., Effects of a Surface Active Medium on the Deformation of Metals, H.M.S.O., London (1958).Google Scholar
  43. 43.
    Harper, S. and Cottrell, A. H., “Surface Effects and the Plasticity of Zinc Crystals,” Proc. Phys. Soc, B63 (1950), 331.Google Scholar
  44. 44.
    Forrest, P. G., Fatigue of Metals, Addison-Wesley, Reading, Massachusetts (1962).Google Scholar
  45. 45.
    Jackson, J. S., “Hydrogen Occlusion and its Effect on Fatigue Properties of Plain Carbon Spring Steels,” Proc. Int. Conf. on Fatigue, Inst. Mech. Engrs. (1956), 500.Google Scholar
  46. 46.
    Bennett, J. A., “Effect of Anodic (HAE) Coating on the Fatigue Strength of Magnesium Alloy Specimens,” Proc. ASTM, 55 (1955), 1015.Google Scholar
  47. 47.
    Wadsworth, N. J., and Hutchings, J., “The Effect of Atmospheric Corrosion on Metal Fatigue,” Phil. Mag., 3 (1958), 1154.CrossRefGoogle Scholar
  48. 48.
    Gough, H. J. and Sopwith, D. G., “Atmospheric Action as a Factor in the Fatigue of Metals,” J. Inst. Met., 49 (1932), 93.Google Scholar
  49. 49.
    Broom, T. and Nicholson, J., “Atmospheric Corrosion Fatigue of Age-Hardened Aluminum Alloys,” J. Inst. Met., 89 (1961), 183.Google Scholar
  50. 50.
    Kramer, I. R. and Podlaseck, S., “Stress-Strain Behavior of Aluminum Crystals at Low Pressures,” Acta Met., 11 (1963), 70.CrossRefGoogle Scholar
  51. 51.
    Westwood, A. R. C., “Environment-Sensitive Mechanical Behavior—Status and Problems,” Environment-Sensuive Mechanical Behavior, Gordon and Breach, New York (1966), 1.Google Scholar
  52. 52.
    Vitovec, F. H., “Effect of Hydrogen Environment on Creep and Fracture of Steels,” Proc. Int. Conf. on Fracture, Sendai (1965), 1895.Google Scholar
  53. 53.
    Shahinian, P., “Creep-Rupture Behavior of Unnotched and Notched Nickel-Base Alloys in Air and in Vacuum,” Trans. ASME, J. of Basic Eng., 87 (1965), 344.CrossRefGoogle Scholar
  54. 54.
    Hancock, G. G. and Johnson, H. H., “Hydrogen, Oxygen, and Subcritical Crack Growth in a High Strength Steel,” Trans. Met. Soc. AIME, 236 (1966), 513.Google Scholar
  55. 55.
    Wei, R. P., Talda, P. M. and Li, C. Y., “Fatigue Crack Propagation in some Ultra-High Strength Steels,” Proc. ASTM, to be published.Google Scholar
  56. 56.
    Smoluchowski, R., “Anisotropy of the Electronic Work Function of Metals,” Phys. Rev., 60 (1941), 661.CrossRefGoogle Scholar
  57. 57.
    Herring, C. and Nichols, M. H., “Thermionic Emission,” Rev. Mod. Phys., 21 (1949), 185.CrossRefGoogle Scholar
  58. 58.
    Palmberg, P. W. and Peria, W. T., “Low Energy Electron Diffraction Studies on Ge and Na-Covered Ge,” Surface Science, 6 (1967), 57.CrossRefGoogle Scholar
  59. 59.
    Kingdon, K. H., “Electron Emission from Adsorbed Films on Tungsten,” Phys. Rev., 24 (1924), 510.CrossRefGoogle Scholar
  60. 60.
    Rump, B. S. and Gehman, B. L., “Work Function Measurements of Nickel, Molybdenum, and Tungsten in a Cesium-Hydrogen Atmosphere,” J. Appl. Phys., 36 (1965), 2347.CrossRefGoogle Scholar
  61. 61.
    Grimley, T. B., “The Indirect Interaction between Atoms or Molecules Adsorbed on Metals,” Proc. Phys. Soc., 90 (1967), 751.CrossRefGoogle Scholar
  62. 62.
    Bennett, A. J. and Falicov, L. M., “Theory of the Electronic Configuration of a Metallic-Surface Adsorbate System,” Phys. Rev., 151 (1966), 512.CrossRefGoogle Scholar
  63. 63.
    Gadzuk, J. W., “Theory of Atom-Metal Interations. I. Alkali Atom Adsorption,” Surface Sei., 6 (1967), 133.CrossRefGoogle Scholar
  64. 64.
    Gadzuk, J. W., “Theory of Atom-Metal Interactions. II. One-electron Transition Matrix Elements,” Surface Sci., 6 (1967), 159.CrossRefGoogle Scholar
  65. 65.
    Lander, J. I. and Morrison, J., “A LEED Investigation of Physisorption,” Surface Sci., 6 (1967), 1.CrossRefGoogle Scholar
  66. 66.
    Bowden, F. P. and Tabor, D., Friction and Lubrication of Solids, Clarendon Press, Oxford, Pt I (1954), Pt II (1964).Google Scholar
  67. 67.
    King, R. F. and Tabor, D., “The Strength Properties and Frictional Behavior of Brittle Solids,” Proc. Roy. Soc, A223 (1954), 225.Google Scholar
  68. 68.
    Bowden, F. P. and Brookes, C. A., “Frictional Anisotropy in Nonmetallic Crystals,” Proc. Roy. Soc, A295 (1966), 244.Google Scholar
  69. 69.
    Byerlee, J. D., “Theory of Friction Based on Brittle Fracture,” J. Appl. Phys., 38 (1967), 2928.CrossRefGoogle Scholar
  70. 70.
    Keller, D. V., Jr., “Application of Recent Static Adhesion Data to the Adhesion Theory of Friction,” Surfaces and Interfaces I, Chemical and Physical Characteristics, Burke et al., eds., Syracuse Univ. Press, Syracuse (1967).Google Scholar
  71. 71.
    Bowden, F. P. and Tabor, D., “Influence of Surface Films on the Friction and Deformation of Surfaces,” Properties of Metallic Surfaces, Institute of Metals, London (1953), 197.Google Scholar
  72. 72.
    Savage, R. H., “Graphite Lubrication,” J. Appl. Phys., 19 (1948), 1.CrossRefGoogle Scholar
  73. 73.
    Boes, D. J., “Lubrication with Solids,” Int. Sci. and Technology, June (1966), 80.Google Scholar
  74. 74.
    Fuller, D. D., “Lubrication,” Int. Sci. and Technology, January (1965), 18.Google Scholar
  75. 75.
    Bowden, F. P., Gregory, J. N. and Tabor, D. D., “Lubrication of Metal Surfaces by Fatty Acids,” Nature, 156 (1945), 97.CrossRefGoogle Scholar
  76. 76.
    Hilton-Smith, H. A. and Fort, T., “Some Properties of Surface Films Formed by Adsorption of n-Nonadecanoic Acid on Mechanically Activated Metal Surfaces,” J. Phys. Chem., 62 (1958), 519.CrossRefGoogle Scholar
  77. 77.
    Gross, W., “Gas Lubrication,” Int. Sci. and Technology, January (1963), 32.Google Scholar
  78. 78.
    Coble, R. L. and Burke, J. E., “Sintering in Ceramics,” Prog. In Ceram. Sci., 3 (1963), 197.Google Scholar
  79. 79.
    Kuczysnki, G. C., “Self-Diffusion in Sintering of Metallic Particles,” Trans. AIME, 185 (1949), 169.Google Scholar
  80. 80.
    Kuczynski, G. C., Matsumura, G. and Cullity, B. A., “Segregation in Homogeneous Alloys During Sintering,” Acta Met., 8 (1960), 209.CrossRefGoogle Scholar
  81. 81.
    Seigle, L. L., Kinetics of High Temperature Processes, John Wiley, New York (1960).Google Scholar
  82. 82.
    Alexander, B. and Baluffi, R. W., “The Mechanism of Sintering of Copper,” Ada Met., 5 (1957), 666.CrossRefGoogle Scholar
  83. 83.
    Coble, R. L., “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models,” J. Appl. Phys., 32 (1961), 787.CrossRefGoogle Scholar
  84. 84.
    Aitkin, E. A., “Initial Sintering Kinetics of Beryllium Oxide,” J. Am. Ceram. Soc., 43 (1960), 627.CrossRefGoogle Scholar
  85. 85.
    Brophy, J., Shepard, L. and Wulff, J., (1960). Reported in Ref. 68.Google Scholar
  86. 86.
    Sutton, W. H. and Feingold, E., “Role of Interfacially Active Metals in the Apparent Adherance of Nickel to Sapphire,” Mat. Sci. Res., 3 (1966), 577.Google Scholar
  87. 87.
    Bailey, G. L. J. and Watkins, H. C., “The Flow of Liquid Metals on Solid Metal Surfaces, and its Relation to Soldering, Brazing and Hot-Dip Coating,” J. Inst. Met., 80 (1951–52), 57.Google Scholar
  88. 88.
    Klein-Wassink, R. J., “Wetting of Solid-Metal Surfaces by Molten Metals,” J. Inst. Met., 95 (1967), 38.Google Scholar
  89. 89.
    Morgan, W. A., “Embrittlement of Solid Metals in a Liquid Metal,” Metal Treatment and Drop Forging, September (1959), 333.Google Scholar
  90. 90.
    Albom, N. J., “Solid State Welding of Reactive and Refractory Metals,” Mat. in Design Engineering, April (1965), 106.Google Scholar
  91. 91.
    Fowkes, F. M., “Attractive Forces at Interfaces,” Ind. and Eng. Chem., 56 (1964), 40.CrossRefGoogle Scholar
  92. 92.
    Fowkes, F. M., “Intermolecular and Interatomic Forces at Interfaces,” Surfaces and Interfaces I, Chemical and Physical Characteristics, Burke et al., eds., Syracuse University Press, Syracuse (1967), 197.Google Scholar
  93. 93.
    Lennard-Jones, J. E., “Processes of Adsorption and Diffusion on Solid Surfaces,” Trans. Faraday Soc, 28 (1932), 334.CrossRefGoogle Scholar
  94. 94.
    Bewig, K. W. and Zisman, W. A., “Surface Potentials and Induced Polarization in Nonpolar Liquids Adsorbed on Metals,” J. Phys. Chem., 68 (1964), 804.CrossRefGoogle Scholar
  95. 95.
    Brooks, H., “Binding in Metals,” Trans. Met. Soc. AIME, 227 (1963), 546.Google Scholar
  96. 96.
    White, M. L., “The Wetting of Gold Surfaces by Water,” J. Phys. Chem., 68 (1964), 3083.CrossRefGoogle Scholar
  97. 97.
    Erb, R. A., “Wettability of Metals under Continuous Condensing Conditions,” J. Phys. Chem., 69 (1965), 1306.CrossRefGoogle Scholar
  98. 98.
    Sharpe, L. H., Schonhorn H. and Lynch, C. J., “Adhesives,” Int. Sci. and Technology, April (1964), 26.Google Scholar
  99. 99.
    Deryaguin, B. V., Krotova, N. A., Karassev, V. V., Kirillova, Y. M. and Aleinikova, I. N., “Electrical Phenomena Accompanying the Formation of New Surfaces, and Their Role in Adhesion and Cohesion,” Proc. 2nd Int. Congress of Surface Activity, 3 (1957), 417.Google Scholar
  100. 100.
    Hauck, J. E., “New High Temperature Adhesives: Easier to Apply, Stand More Heat,” Mat. Engineering, April (1967), 84.Google Scholar
  101. 101.
    Thomas, G. and Nutting, J., “The Aging Characteristics of Aluminum Alloys,” J. Inst. Met., 88 (1959–60), 81.Google Scholar
  102. 102.
    Pugh, E. N. and Jones, W. R. D., “The Mechanism of Stress-Corrosion in a High Purity Aluminum-Zinc-Magnesium Alloy,” Metallurgia, 63 (1961), 3.Google Scholar
  103. 103.
    Thomas, G., “The Improvement in Stress-Corrosion Resistance of Aluminum D.T.D. 687 Alloys,” J. Inst. Met., 89 (1960–1), 287.Google Scholar
  104. 104.
    Polmear, I. J., “The Properties of Commercial Al-Zn-Mg Alloys,” J. Inst. Met., 89 (1960–61), 193.Google Scholar
  105. 105.
    Pugh, E. N. and Sedriks, A. J., “The Delayed Fracture of Aluminum Alloys,” RIAS Report No. 237, September (1966).Google Scholar
  106. 106.
    Rice, J. R., “An Examination of the Fracture Mechanics Energy Balance from the Point of View of Continuum Mechanics,” Proc. Int. Conf. on Fracture, Sendai (1965), 309.Google Scholar
  107. 107.
    Low, J. R., “Microstructural Aspects of Fracture,” Fracture of Solids, Interscience (1962), 197.Google Scholar
  108. 108.
    Westbrook, J. H. and Wood, D. L., “Degradation in Beryllides, Silicides, Aluminides and Related Compounds,” J. Nucl. Met., 12 (1964), 208.CrossRefGoogle Scholar
  109. 109.
    Aitken, E. A., “Corrosion Behavior,” Intermetallic Compounds, John Wiley, New York (1967), 491.Google Scholar
  110. 110.
    Sutton, W. H. and Chome, J., “Factors Affecting the Tensile Strength of Metals Reinforced with Strong Fibers,” Strengthening Mechanisms—Metals and Ceramics, Syracuse University Press, Syracuse (1966), 549.Google Scholar
  111. 111.
    Sutton, W. H. and Chorne, J., “Potential of Oxide-Fiber Reinforced Metals,” Fiber Composite Materials, ASM, Metals Park, Ohio (1965), 173.Google Scholar
  112. 112.
    Blackburn, L. D., Burte, H. M. and Bonanno, F. R., “Filament Matrix Interactions in Metal Matrix Composites,” Strengthening Mechanisms—Metals and Ceramics, Syracuse University Press, Syracuse (1966), 447.Google Scholar
  113. 113.
    Farrell, K. and Parikh, N. M., Rept. on Contract: NOw-62-0650c, Illinois Inst, Tech. Res. Inst., Chicago (1963).Google Scholar
  114. 114.
    Weeton, J. W. and Signorelli, R. A., “Fiber-Metal Composites,” Strengthening Mechanisms—Metals and Ceramics, Syracuse University Press, Syracuse (1966), 477.Google Scholar
  115. 115.
    Pugh, S. F., “The Fracture of Brittle Materials,” Brit. J. Appl. Phys., 18 (1967), 129.CrossRefGoogle Scholar
  116. 116.
    Griffith, A. A., “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc, A221 (1920), 163.Google Scholar
  117. 117.
    Johnston, T. L., Stokes, R. J. and Li, C. H., “The Fracture Behavior of Silver Chloride-Alumina Composites,” Trans. Met. Soc. AIME, 221 (1961), 792.Google Scholar
  118. 118.
    Forwood, C. T. and Forty, A. J., “The Interaction of Cleavage Cracks with Inhomogenities in Sodium Chloride Crystals,” Phil. Mag., 11 (1965), 1067.CrossRefGoogle Scholar
  119. 119.
    Tetelman, A. and Rau, C. A., “The Effect of Small-Drilled Holes on the Notch Toughness of Iron-Base Alloys,” Proc. Int. Conf. on Fracture, Sendai (1965), 691.Google Scholar
  120. 120.
    Cook, N. C., Reported in Metals-Materials Today (ASM), 40, August (1967), 15.Google Scholar
  121. 121.
    Galmiche, P., Reported by Baldi, A. L., “Composite Coating Increases Life of Super-Alloy and Stainless Steel Parts,” Mat. in Design Engineering, September (1966), 92. See also Metals and Materials, 1 (1967), 167.Google Scholar
  122. 122.
    Friedman, H., “Clad Metal Wires Outperform Solid Wires,” Mat. in Design Engineering, February (1967), 67.Google Scholar
  123. 123.
    Seeman, J. J., “Ion Sputtered Coatings Provide Multi-Functional Finishes,” Mat. in Design Engineering, November (1965), 102.Google Scholar
  124. 124.
    Reported in Mat. in Design Engineering, March (1967), 21.Google Scholar
  125. 125.
    Roberts, L., “Ablation Materials for Atmosphere Re-entry,” NASA Report SP-27, December (1962), 23.Google Scholar
  126. 126.
    Busche, M. G., “Porous Metals Filter Liquids, Cut Noise, Dampen Vibration,” Mat. in Design Engineering, February (1967), 80.Google Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1968

Authors and Affiliations

  • A. R. C. Westwood
    • 1
  • R. G. Lye
    • 1
  1. 1.Research Institute for Advanced StudiesMartin Marietta CorporationBaltimoreUSA

Personalised recommendations