Skip to main content

Surfaces and Interfaces in Materials Technology

  • Chapter
Surfaces and Interfaces II

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((SAMC,volume 14))

Abstract

Surfaces and interfaces are involved in many aspects of engineering technology. Of particular interest to materials scientists are those aspects in which phenomena occurring at external or internal surfaces determine mechanical behavior, or electronic properties. In this paper, factors involved in some of these effects, and in such important surface phenomena as friction, lubrication and wear, sintering, welding and adhesion, are reviewed and briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Volkenstein, F. F., “Electronic Processes at the Surface of a Semiconductor During Chemisorption,” Soviet Physics Uspehki, 9 (1967), 743.

    Article  Google Scholar 

  2. Gomer, R., “Surface Phenomena-The Nature and Properties of Solid Surfaces and Interfaces,” Perspectives in Materials Research, Office of Naval Research, Washington (1963), 498.

    Google Scholar 

  3. Bardeen, J. and Brattain, W. H., “Physical Principles Involved in Transistor Actions,” Phys. Rev., 75 (1949), 1208.

    Article  Google Scholar 

  4. Environment-Sensitive Mechanical Behavior, ed. Westwood, A. R. C. and Stoloff, N. S., Gordon and Breach, New York (1966).

    Google Scholar 

  5. Stokes, R. J., Johnston, T. L. and Li, C. H., “Effect of Slip Distribution on the Fracture Behavior of Magnesium Oxide Single Crystals,” Phil. Mag., 6 (1961), 9.

    Article  CAS  Google Scholar 

  6. Westwood, A. R. C., “On the Fracture Behavior of MgO Bicrystals,” Phil. Mag., 6 (1961), 195.

    Article  CAS  Google Scholar 

  7. Ku, R. C. and Johnston, T. L., “Fracture Strength of MgO Crystals,” Phil. Mag., 9 (1964), 231.

    Article  CAS  Google Scholar 

  8. Worzala, F. J. and Robinson, W. H., “Surface Dislocation Sources and Plastic Flow in Silver Monocrystals,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 183.

    Google Scholar 

  9. Grosskreutz, J. C. and Bowles, C. Q., “Effect of Environmental Gases on the Surface Deformation of Aluminum and Gold in Fatigue,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 67.

    Google Scholar 

  10. Worthington, P. J. and Smith, E., “The Formation of Slip Bands in Polycrystalline 3% Silicon Iron in the Pre-Yield Microstrain Region,” Acta Met., 12 (1964), 1277.

    Article  CAS  Google Scholar 

  11. Epsey, G. B., Jones, M. H. and Brown, W. F., “A Preliminary Report on Sharp Notch and Smooth Tensile Characteristics for a Number of Ultra High Strength Sheet Alloys,” Proc. ASTM, 59 (1959), 837.

    Google Scholar 

  12. Westwood, A. R. C., “Introduction to the Surface-Sensitive Mechanical Behavior of Materials,” Ind. and Eng. Chem., 56 (1964), 14.

    Article  CAS  Google Scholar 

  13. Fourdeaux, A. and Wronski, A., “New Electrolytic Method for Cutting and Shaping Metal Specimens,” Brit. J. Appl. Phys., 14 (1963), 218.

    Article  Google Scholar 

  14. Ward, W. V., Jacobson, M. L. and Mathews, C. O., “Effect of Surface Finish on Properties of Beryllium Sheet,” Trans. ASM, 54 (1961), 84.

    CAS  Google Scholar 

  15. Davidenkov, N. N. and Efimova, I. S., “Influence of Surface Condition on Cold Brittleness,” Soviet Physics-Solid State, 1 (1960), 1389.

    Google Scholar 

  16. Breidt, P. J., Hobstetter, J. N. and Ellis, W. C., “Some Effects of Environment on Fracture Stress of Germanium,” J. Appl. Phys., 29 (1958), 226.

    Article  CAS  Google Scholar 

  17. Pugh, E. N., Westwood, A. R. C. and Hitch, T. T., “Effects of Liquid Metals on the Fracture Strength of Germanium Monocrystals,” Phys. Stat. Solidi, 15 (1966), 291.

    Article  CAS  Google Scholar 

  18. Mock, J. A., “Coatings and Finishes,” Mat. in Design Engineering, January (1966), 88.

    Google Scholar 

  19. Zimmel, L. J., “An Analysis of the Effects of ECM on the Fatigue of 403 SS,” presented at Nat. Aeronautic and Space Eng. Meeting, Los Angeles, October (1964).

    Google Scholar 

  20. Pugh, E. N., “On the Mechanism(s) of Stress-Corrosion Cracking,” Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966), 351.

    Google Scholar 

  21. Graf, L., “Stress Corrosion Cracking in Homogeneous Alloys,” Stress Corrosion Cracking and Embrittlement, John Wiley, New York (1956), 48.

    Google Scholar 

  22. Forty, A. J. and Humble, P., “Influence of Surface Tarnishing on the Stress-Corrosion of a-Brass,” Phil. Mag., 8 (1963), 247.

    Article  CAS  Google Scholar 

  23. McEvily, A. J. and Bond, A. P., “On the Initiation and Growth of Stress Corrosion Cracks in Tarnished Brass,” J. Electrochem. Soc, 112 (1965), 131.

    Article  CAS  Google Scholar 

  24. Pugh, E. N. and Westwood, A. R. C., “Complex-Ions and the Stress-Corrosion Cracking of α-Brass,” Phil. Mag., 13 (1966), 167.

    Article  CAS  Google Scholar 

  25. Sedriks, A. J., “Structure of Tarnish Films on Stress Corrosion Fracture Surfaces of Ti-5% Al-2.57% Sn Alloy Tested in Nitrogen Tetroxide,” Trans. Met. Soc. AIME, 239 (1967), 916.

    CAS  Google Scholar 

  26. Pugh, E. N., Montague, W. M. and Westwood, A. R. C., “Stress-Corrosion Cracking of Copper,” Corrosion Sci., 6 (1966), 345.

    Article  CAS  Google Scholar 

  27. Hanna, G. L., Troiano, A. R. and Steigerwald, E. A., “A Mechanism for the Embrittlement of High-Strength Steels by Aqueous Environments,” Trans. ASM, 57 (1964), 658.

    CAS  Google Scholar 

  28. Sedriks, A. J., Slattery, P. W. and Pugh, E. N., “Stress-Corrosion Cracking of α-Titanium in Non-Aqueous Environments,” Proc. Int. Conf. on Stress-Corrosion Cracking, Columbus, Ohio, September (1967), to be published.

    Google Scholar 

  29. Brattain, W. H., “Introduction to the Physics and Chemistry of Surfaces,” The Surface Chemistry of Metals and Semiconductors, John Wiley, New York (1959), 9.

    Google Scholar 

  30. Westwood, A. R. C., Preece, C. M. and Kamdar, M. H., “Application of Crack Propagation Criterion to Liquid Metal Embrittlement; Cleavage of Aluminum in Liquid Gallium,” Trans. ASM, 60 (1967), 723.

    CAS  Google Scholar 

  31. Westwood, A. R. C. and Kamdar, M. H., “Concerning Liquid-Metal Embrittlement, Particularly of Zinc Monocrystals by Mercury,” Phil. Mag., 8 (1963), 787.

    Article  CAS  Google Scholar 

  32. Stoloff, N. S. and Johnston, T. L., “Crack Propagation in a Liquid Metal Environment,” Acta Met., 11 (1963), 251.

    Article  CAS  Google Scholar 

  33. Likhtman, V. I. and Shchukin, E. D., “Physico-Chemical Phenomena in the Deformation of Metals,” Soviet Physics Uspekhi, 1 (1958), 91.

    Article  Google Scholar 

  34. Kelly, A., Tyson, W. R. and Cottrell, A. H., “Ductile and Brittle Crystals,” Phil. Mag., 15 (1967), 567.

    Article  CAS  Google Scholar 

  35. Douglass, R. W., Krier, C. A. and Jaffee, R. I., “High Temperature Properties and Alloying Behavior of Refractory Platinum Group Metals,” Battelle Memorial Inst. Rept. (AD 265-624), August (1961).

    Google Scholar 

  36. Westwood, A. R. C., Goldheim, D. L. and Pugh, E. N., “A Double-Layer Mechanism for the Complex-Ion Embrittlement of AgCl,” Phil. Mag., 15 (1967), 105.

    Article  CAS  Google Scholar 

  37. Westwood, A. R. C., Goldheim, D. L. and Lye, R. G., “Rebinder-Effects in MgO,” Phil. Mag., 16 (1967), 505.

    Article  CAS  Google Scholar 

  38. Rebinder, P. A., Schreiner, L. A. and Zhigach, K. F., Hardness Reducers in Drilling, C.S.I.R.O., Melbourne (1948), 1.

    Google Scholar 

  39. Johnston, W. G., “Effect of Impurities on the Flow Stress of LiF Crystals,” J. Appl. Phys., 33 (1962), 2050.

    Article  CAS  Google Scholar 

  40. Pratt, P. L., Chang, R. and Newey, C. W., “Effect of Divalent Metal Impurity Distribution, Quenching Rate, and Annealing Temperature on Flow Stress of Ionic Crystals,” Appl. Phys. Letters, 3, No. 5 (1963), 83.

    Article  Google Scholar 

  41. Mark, P., “Chemisorption and Trapping on Insulator Surfaces,” Trans. N.Y. Acad. of Sci., 27 (1965), 946.

    Article  CAS  Google Scholar 

  42. Likhtman, V.I., Rehbinder, P. A. and Karpenko, G. V., Effects of a Surface Active Medium on the Deformation of Metals, H.M.S.O., London (1958).

    Google Scholar 

  43. Harper, S. and Cottrell, A. H., “Surface Effects and the Plasticity of Zinc Crystals,” Proc. Phys. Soc, B63 (1950), 331.

    Google Scholar 

  44. Forrest, P. G., Fatigue of Metals, Addison-Wesley, Reading, Massachusetts (1962).

    Google Scholar 

  45. Jackson, J. S., “Hydrogen Occlusion and its Effect on Fatigue Properties of Plain Carbon Spring Steels,” Proc. Int. Conf. on Fatigue, Inst. Mech. Engrs. (1956), 500.

    Google Scholar 

  46. Bennett, J. A., “Effect of Anodic (HAE) Coating on the Fatigue Strength of Magnesium Alloy Specimens,” Proc. ASTM, 55 (1955), 1015.

    CAS  Google Scholar 

  47. Wadsworth, N. J., and Hutchings, J., “The Effect of Atmospheric Corrosion on Metal Fatigue,” Phil. Mag., 3 (1958), 1154.

    Article  CAS  Google Scholar 

  48. Gough, H. J. and Sopwith, D. G., “Atmospheric Action as a Factor in the Fatigue of Metals,” J. Inst. Met., 49 (1932), 93.

    Google Scholar 

  49. Broom, T. and Nicholson, J., “Atmospheric Corrosion Fatigue of Age-Hardened Aluminum Alloys,” J. Inst. Met., 89 (1961), 183.

    CAS  Google Scholar 

  50. Kramer, I. R. and Podlaseck, S., “Stress-Strain Behavior of Aluminum Crystals at Low Pressures,” Acta Met., 11 (1963), 70.

    Article  CAS  Google Scholar 

  51. Westwood, A. R. C., “Environment-Sensitive Mechanical Behavior—Status and Problems,” Environment-Sensuive Mechanical Behavior, Gordon and Breach, New York (1966), 1.

    Google Scholar 

  52. Vitovec, F. H., “Effect of Hydrogen Environment on Creep and Fracture of Steels,” Proc. Int. Conf. on Fracture, Sendai (1965), 1895.

    Google Scholar 

  53. Shahinian, P., “Creep-Rupture Behavior of Unnotched and Notched Nickel-Base Alloys in Air and in Vacuum,” Trans. ASME, J. of Basic Eng., 87 (1965), 344.

    Article  CAS  Google Scholar 

  54. Hancock, G. G. and Johnson, H. H., “Hydrogen, Oxygen, and Subcritical Crack Growth in a High Strength Steel,” Trans. Met. Soc. AIME, 236 (1966), 513.

    CAS  Google Scholar 

  55. Wei, R. P., Talda, P. M. and Li, C. Y., “Fatigue Crack Propagation in some Ultra-High Strength Steels,” Proc. ASTM, to be published.

    Google Scholar 

  56. Smoluchowski, R., “Anisotropy of the Electronic Work Function of Metals,” Phys. Rev., 60 (1941), 661.

    Article  CAS  Google Scholar 

  57. Herring, C. and Nichols, M. H., “Thermionic Emission,” Rev. Mod. Phys., 21 (1949), 185.

    Article  CAS  Google Scholar 

  58. Palmberg, P. W. and Peria, W. T., “Low Energy Electron Diffraction Studies on Ge and Na-Covered Ge,” Surface Science, 6 (1967), 57.

    Article  CAS  Google Scholar 

  59. Kingdon, K. H., “Electron Emission from Adsorbed Films on Tungsten,” Phys. Rev., 24 (1924), 510.

    Article  CAS  Google Scholar 

  60. Rump, B. S. and Gehman, B. L., “Work Function Measurements of Nickel, Molybdenum, and Tungsten in a Cesium-Hydrogen Atmosphere,” J. Appl. Phys., 36 (1965), 2347.

    Article  CAS  Google Scholar 

  61. Grimley, T. B., “The Indirect Interaction between Atoms or Molecules Adsorbed on Metals,” Proc. Phys. Soc., 90 (1967), 751.

    Article  CAS  Google Scholar 

  62. Bennett, A. J. and Falicov, L. M., “Theory of the Electronic Configuration of a Metallic-Surface Adsorbate System,” Phys. Rev., 151 (1966), 512.

    Article  CAS  Google Scholar 

  63. Gadzuk, J. W., “Theory of Atom-Metal Interations. I. Alkali Atom Adsorption,” Surface Sei., 6 (1967), 133.

    Article  CAS  Google Scholar 

  64. Gadzuk, J. W., “Theory of Atom-Metal Interactions. II. One-electron Transition Matrix Elements,” Surface Sci., 6 (1967), 159.

    Article  CAS  Google Scholar 

  65. Lander, J. I. and Morrison, J., “A LEED Investigation of Physisorption,” Surface Sci., 6 (1967), 1.

    Article  CAS  Google Scholar 

  66. Bowden, F. P. and Tabor, D., Friction and Lubrication of Solids, Clarendon Press, Oxford, Pt I (1954), Pt II (1964).

    Google Scholar 

  67. King, R. F. and Tabor, D., “The Strength Properties and Frictional Behavior of Brittle Solids,” Proc. Roy. Soc, A223 (1954), 225.

    Google Scholar 

  68. Bowden, F. P. and Brookes, C. A., “Frictional Anisotropy in Nonmetallic Crystals,” Proc. Roy. Soc, A295 (1966), 244.

    Google Scholar 

  69. Byerlee, J. D., “Theory of Friction Based on Brittle Fracture,” J. Appl. Phys., 38 (1967), 2928.

    Article  CAS  Google Scholar 

  70. Keller, D. V., Jr., “Application of Recent Static Adhesion Data to the Adhesion Theory of Friction,” Surfaces and Interfaces I, Chemical and Physical Characteristics, Burke et al., eds., Syracuse Univ. Press, Syracuse (1967).

    Google Scholar 

  71. Bowden, F. P. and Tabor, D., “Influence of Surface Films on the Friction and Deformation of Surfaces,” Properties of Metallic Surfaces, Institute of Metals, London (1953), 197.

    Google Scholar 

  72. Savage, R. H., “Graphite Lubrication,” J. Appl. Phys., 19 (1948), 1.

    Article  CAS  Google Scholar 

  73. Boes, D. J., “Lubrication with Solids,” Int. Sci. and Technology, June (1966), 80.

    Google Scholar 

  74. Fuller, D. D., “Lubrication,” Int. Sci. and Technology, January (1965), 18.

    Google Scholar 

  75. Bowden, F. P., Gregory, J. N. and Tabor, D. D., “Lubrication of Metal Surfaces by Fatty Acids,” Nature, 156 (1945), 97.

    Article  CAS  Google Scholar 

  76. Hilton-Smith, H. A. and Fort, T., “Some Properties of Surface Films Formed by Adsorption of n-Nonadecanoic Acid on Mechanically Activated Metal Surfaces,” J. Phys. Chem., 62 (1958), 519.

    Article  Google Scholar 

  77. Gross, W., “Gas Lubrication,” Int. Sci. and Technology, January (1963), 32.

    Google Scholar 

  78. Coble, R. L. and Burke, J. E., “Sintering in Ceramics,” Prog. In Ceram. Sci., 3 (1963), 197.

    CAS  Google Scholar 

  79. Kuczysnki, G. C., “Self-Diffusion in Sintering of Metallic Particles,” Trans. AIME, 185 (1949), 169.

    Google Scholar 

  80. Kuczynski, G. C., Matsumura, G. and Cullity, B. A., “Segregation in Homogeneous Alloys During Sintering,” Acta Met., 8 (1960), 209.

    Article  CAS  Google Scholar 

  81. Seigle, L. L., Kinetics of High Temperature Processes, John Wiley, New York (1960).

    Google Scholar 

  82. Alexander, B. and Baluffi, R. W., “The Mechanism of Sintering of Copper,” Ada Met., 5 (1957), 666.

    Article  CAS  Google Scholar 

  83. Coble, R. L., “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models,” J. Appl. Phys., 32 (1961), 787.

    Article  CAS  Google Scholar 

  84. Aitkin, E. A., “Initial Sintering Kinetics of Beryllium Oxide,” J. Am. Ceram. Soc., 43 (1960), 627.

    Article  Google Scholar 

  85. Brophy, J., Shepard, L. and Wulff, J., (1960). Reported in Ref. 68.

    Google Scholar 

  86. Sutton, W. H. and Feingold, E., “Role of Interfacially Active Metals in the Apparent Adherance of Nickel to Sapphire,” Mat. Sci. Res., 3 (1966), 577.

    CAS  Google Scholar 

  87. Bailey, G. L. J. and Watkins, H. C., “The Flow of Liquid Metals on Solid Metal Surfaces, and its Relation to Soldering, Brazing and Hot-Dip Coating,” J. Inst. Met., 80 (1951–52), 57.

    CAS  Google Scholar 

  88. Klein-Wassink, R. J., “Wetting of Solid-Metal Surfaces by Molten Metals,” J. Inst. Met., 95 (1967), 38.

    CAS  Google Scholar 

  89. Morgan, W. A., “Embrittlement of Solid Metals in a Liquid Metal,” Metal Treatment and Drop Forging, September (1959), 333.

    Google Scholar 

  90. Albom, N. J., “Solid State Welding of Reactive and Refractory Metals,” Mat. in Design Engineering, April (1965), 106.

    Google Scholar 

  91. Fowkes, F. M., “Attractive Forces at Interfaces,” Ind. and Eng. Chem., 56 (1964), 40.

    Article  CAS  Google Scholar 

  92. Fowkes, F. M., “Intermolecular and Interatomic Forces at Interfaces,” Surfaces and Interfaces I, Chemical and Physical Characteristics, Burke et al., eds., Syracuse University Press, Syracuse (1967), 197.

    Google Scholar 

  93. Lennard-Jones, J. E., “Processes of Adsorption and Diffusion on Solid Surfaces,” Trans. Faraday Soc, 28 (1932), 334.

    Article  Google Scholar 

  94. Bewig, K. W. and Zisman, W. A., “Surface Potentials and Induced Polarization in Nonpolar Liquids Adsorbed on Metals,” J. Phys. Chem., 68 (1964), 804.

    Article  Google Scholar 

  95. Brooks, H., “Binding in Metals,” Trans. Met. Soc. AIME, 227 (1963), 546.

    CAS  Google Scholar 

  96. White, M. L., “The Wetting of Gold Surfaces by Water,” J. Phys. Chem., 68 (1964), 3083.

    Article  CAS  Google Scholar 

  97. Erb, R. A., “Wettability of Metals under Continuous Condensing Conditions,” J. Phys. Chem., 69 (1965), 1306.

    Article  CAS  Google Scholar 

  98. Sharpe, L. H., Schonhorn H. and Lynch, C. J., “Adhesives,” Int. Sci. and Technology, April (1964), 26.

    Google Scholar 

  99. Deryaguin, B. V., Krotova, N. A., Karassev, V. V., Kirillova, Y. M. and Aleinikova, I. N., “Electrical Phenomena Accompanying the Formation of New Surfaces, and Their Role in Adhesion and Cohesion,” Proc. 2nd Int. Congress of Surface Activity, 3 (1957), 417.

    Google Scholar 

  100. Hauck, J. E., “New High Temperature Adhesives: Easier to Apply, Stand More Heat,” Mat. Engineering, April (1967), 84.

    Google Scholar 

  101. Thomas, G. and Nutting, J., “The Aging Characteristics of Aluminum Alloys,” J. Inst. Met., 88 (1959–60), 81.

    Google Scholar 

  102. Pugh, E. N. and Jones, W. R. D., “The Mechanism of Stress-Corrosion in a High Purity Aluminum-Zinc-Magnesium Alloy,” Metallurgia, 63 (1961), 3.

    CAS  Google Scholar 

  103. Thomas, G., “The Improvement in Stress-Corrosion Resistance of Aluminum D.T.D. 687 Alloys,” J. Inst. Met., 89 (1960–1), 287.

    Google Scholar 

  104. Polmear, I. J., “The Properties of Commercial Al-Zn-Mg Alloys,” J. Inst. Met., 89 (1960–61), 193.

    Google Scholar 

  105. Pugh, E. N. and Sedriks, A. J., “The Delayed Fracture of Aluminum Alloys,” RIAS Report No. 237, September (1966).

    Google Scholar 

  106. Rice, J. R., “An Examination of the Fracture Mechanics Energy Balance from the Point of View of Continuum Mechanics,” Proc. Int. Conf. on Fracture, Sendai (1965), 309.

    Google Scholar 

  107. Low, J. R., “Microstructural Aspects of Fracture,” Fracture of Solids, Interscience (1962), 197.

    Google Scholar 

  108. Westbrook, J. H. and Wood, D. L., “Degradation in Beryllides, Silicides, Aluminides and Related Compounds,” J. Nucl. Met., 12 (1964), 208.

    Article  CAS  Google Scholar 

  109. Aitken, E. A., “Corrosion Behavior,” Intermetallic Compounds, John Wiley, New York (1967), 491.

    Google Scholar 

  110. Sutton, W. H. and Chome, J., “Factors Affecting the Tensile Strength of Metals Reinforced with Strong Fibers,” Strengthening Mechanisms—Metals and Ceramics, Syracuse University Press, Syracuse (1966), 549.

    Google Scholar 

  111. Sutton, W. H. and Chorne, J., “Potential of Oxide-Fiber Reinforced Metals,” Fiber Composite Materials, ASM, Metals Park, Ohio (1965), 173.

    Google Scholar 

  112. Blackburn, L. D., Burte, H. M. and Bonanno, F. R., “Filament Matrix Interactions in Metal Matrix Composites,” Strengthening Mechanisms—Metals and Ceramics, Syracuse University Press, Syracuse (1966), 447.

    Google Scholar 

  113. Farrell, K. and Parikh, N. M., Rept. on Contract: NOw-62-0650c, Illinois Inst, Tech. Res. Inst., Chicago (1963).

    Google Scholar 

  114. Weeton, J. W. and Signorelli, R. A., “Fiber-Metal Composites,” Strengthening Mechanisms—Metals and Ceramics, Syracuse University Press, Syracuse (1966), 477.

    Google Scholar 

  115. Pugh, S. F., “The Fracture of Brittle Materials,” Brit. J. Appl. Phys., 18 (1967), 129.

    Article  CAS  Google Scholar 

  116. Griffith, A. A., “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc, A221 (1920), 163.

    Google Scholar 

  117. Johnston, T. L., Stokes, R. J. and Li, C. H., “The Fracture Behavior of Silver Chloride-Alumina Composites,” Trans. Met. Soc. AIME, 221 (1961), 792.

    CAS  Google Scholar 

  118. Forwood, C. T. and Forty, A. J., “The Interaction of Cleavage Cracks with Inhomogenities in Sodium Chloride Crystals,” Phil. Mag., 11 (1965), 1067.

    Article  CAS  Google Scholar 

  119. Tetelman, A. and Rau, C. A., “The Effect of Small-Drilled Holes on the Notch Toughness of Iron-Base Alloys,” Proc. Int. Conf. on Fracture, Sendai (1965), 691.

    Google Scholar 

  120. Cook, N. C., Reported in Metals-Materials Today (ASM), 40, August (1967), 15.

    Google Scholar 

  121. Galmiche, P., Reported by Baldi, A. L., “Composite Coating Increases Life of Super-Alloy and Stainless Steel Parts,” Mat. in Design Engineering, September (1966), 92. See also Metals and Materials, 1 (1967), 167.

    Google Scholar 

  122. Friedman, H., “Clad Metal Wires Outperform Solid Wires,” Mat. in Design Engineering, February (1967), 67.

    Google Scholar 

  123. Seeman, J. J., “Ion Sputtered Coatings Provide Multi-Functional Finishes,” Mat. in Design Engineering, November (1965), 102.

    Google Scholar 

  124. Reported in Mat. in Design Engineering, March (1967), 21.

    Google Scholar 

  125. Roberts, L., “Ablation Materials for Atmosphere Re-entry,” NASA Report SP-27, December (1962), 23.

    Google Scholar 

  126. Busche, M. G., “Porous Metals Filter Liquids, Cut Noise, Dampen Vibration,” Mat. in Design Engineering, February (1967), 80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Syracuse University Press Syracuse, New York

About this chapter

Cite this chapter

Westwood, A.R.C., Lye, R.G. (1968). Surfaces and Interfaces in Materials Technology. In: Burke, J.J., Reed, N.L., Weiss, V. (eds) Surfaces and Interfaces II. Sagamore Army Materials Research Conference Proceedings, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0178-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0178-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0180-7

  • Online ISBN: 978-1-4757-0178-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics