Advertisement

Patterns In Chaos

  • Boris V. Chirikov
Part of the NATO ASI Series book series (NSSB, volume 280)

Abstract

Classification of chaotic patterns in classical Hamiltonian systems is given as a series of levels with increasing disorder. Overview of critical phenomena in Hamiltonian dynamics is presented, including the renormalization chaos, based upon the fairly simple resonant theory. First estimates for the critical structure and related statistical anomalies in arbitrary dimensions are discussed.

Keywords

Renormalization Group Scale Invariance Critical Phenomenon Chaotic Motion Rotation Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.M. Alekseev and M.V. Yakobson, Phys. Reports 75 (1981) 287.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    G. Chaitin, Information, Randomness and Incompleteness (World Scientific, 1990).Google Scholar
  3. [3]
    B.V. Chirikov, F.M. Izrailev and D.L. Shepelyansky, Physica D 33 (1988) 77.MathSciNetADSCrossRefMATHGoogle Scholar
  4. [4]
    B.V. Chirikov, Time-Dependent Quantum Systems, Proc. Les Houches Summer School on Chaos and Quantum Physics (Elsevier, 1990).Google Scholar
  5. [5]
    A. Lichtenberg, M. Lieberman, Regular and Stochastic Motion (Springer, 1983).Google Scholar
  6. [6]
    G.M. Zaslavsky, Chaos in Dynamic Systems (Harwood, 1985).Google Scholar
  7. [7]
    B.V. Chirikov, Phys. Reports 52 (1979) 263.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    B.V. Chirikov and V.V. Vecheslavov, Astron. Astroph. 221 (1989) 146.ADSGoogle Scholar
  9. [9]
    G. Casati et al., Phys. rev. A 36 (1987) 3501.ADSCrossRefGoogle Scholar
  10. [10]
    A.A. Chernikov, R.Z. Sagdeev and G.M. Zaslavsky, Physica D 33 (1988) 65.MathSciNetADSCrossRefMATHGoogle Scholar
  11. [11]
    B.V. Chirikov, Foundations of Physics 16 (1986) 39.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M. Eisenman et al., Lecture Notes in Physics 38 (1975) 112; J.von Hemmen, ibid., 93 (1979) 232.ADSCrossRefGoogle Scholar
  13. [13]
    B.G. Konopelchenko, Nonlinear Integrable Equations, Lecture Notes in Physics 270 (1987).Google Scholar
  14. [14]
    B.V. Chirikov and V.V. Vecheslavov, KAM integrability, in: Analysis etc. (Academic Press, 1990) p.219.Google Scholar
  15. [15]
    V.I. Arnold and A. Avez, Ergodic Problems in Classical Mechanics (Benjamin, 1968).Google Scholar
  16. [16]
    B.V. Chirikov, Proc. Roy. Soc. Lond. A 413 (1987) 145.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Rechester et al. Phys. Rev. A 23 (1981) 2664.MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    B.V. Chirikov, D.L. Shepelyansky, Radiofizika 29 (1986) 1041.ADSGoogle Scholar
  19. [19]
    F. Vivaldi, private communication.Google Scholar
  20. [20]
    I. Kornfeld, S. Fromin and Ya. Sinai, Ergodic Theory (Springer, 1982).Google Scholar
  21. [21]
    R. MacKay, Physica d 7 (1983) 283.MathSciNetADSCrossRefMATHGoogle Scholar
  22. [22]
    B.V. Chirikov and D.L. Shepelyansky, Physica D 13 (1984) 395.MathSciNetADSCrossRefMATHGoogle Scholar
  23. [23]
    R. Artuso, G. Casati and D.L. Shepelyansky, 1990 (to appear).Google Scholar
  24. [24]
    B.V. Chirikov, D.L. Shepelyansky, Proc. 9th Int. Conf. on Nonlinear Oscillations, Kiev, 1981, Vol.2, p.421. (Kiev, Naukova Dumka, 1983) English translation available as preprint PPL-TRANS-133, Plasma Physics Lab., Princeton Univ., 1983.MathSciNetGoogle Scholar
  25. [25]
    S. Channon and J. Lebowitz, Ann. N.Y. Acad. Sci 357 (1980) 108.ADSCrossRefGoogle Scholar
  26. [26]
    G. Paladin and A. Vulpiani, Phys. Reports 156 (1987) 147.MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    C. Karney. Physica D 8 (1983) 360.MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P. Grassberger and I. Procaccia, Physica D 13 (1984) 34.MathSciNetADSCrossRefMATHGoogle Scholar
  29. [29]
    J. Bene, P. Szépfalusy and A. Fülöp, A generic dynamical phase transition in chaotic Hamiltonian systems, Phys. Rev. Lett. (to appear).Google Scholar
  30. [30]
    B.V. Chirikov and D.L. Shepelyansky, Chaos Border and Statistical Anomalies, in: Renormalization Group, D.V. Shirkov, D.I. Kazakov and A.A. Vladimirov (eds.), p. 221. (World Scientific, Singapore, 1988).Google Scholar
  31. [31]
    B.V. Chirikov, Intrinsic Stochasticity, Proc. Int. Conf. on Plasma Physics, Lausanne, 1984, Vol. II, p.761.Google Scholar
  32. [32]
    G. Schmidt and J. Bialek, Physica D 5 (1982) 397.MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    J. Greene, J.Math.Phys. 9 (1968) 760; 20 (1979) 1183.MathSciNetADSCrossRefMATHGoogle Scholar
  34. [34]
    M. Feigenbaum, J.Stat.Phys. 19 (1978) 25; 21 (1979) 669.MathSciNetADSCrossRefMATHGoogle Scholar
  35. [35]
    S. Ostlund et al.,Physica D 8 (1983) 303.MathSciNetADSCrossRefMATHGoogle Scholar
  36. [36]
    E.M. Lifshits et al., Zh.Eksp.Teor.Fiz. 59 (1970) 322; ibid (Pisma) 38 (1983) 79; J. Barrow, Phys. Reports 85 (1982) 1.ADSGoogle Scholar
  37. [37]
    B.V. Chirikov, The Nature and Properties of the Dynamic Chaos, Proc. 2d Int.Seminar “Group Theory Methods in Physics” (Zveingorod, 1982), Vol.1, p.553. (Harwood, 1985).Google Scholar
  38. [38]
    I. Dana et al., Phys.Rev.Lett. 62 (1989) 233.MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    R. MacKay et al., Physica D 13 (1984) 55.MathSciNetADSCrossRefMATHGoogle Scholar
  40. [40]
    J. Hanson et al. J.Stat.Phys. 39 (1985) 327.MathSciNetADSCrossRefMATHGoogle Scholar
  41. [41]
    B.V. Chirikov, Lecture Notes in Physics 179 (1983) 29.MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    J. Meiss and E. Ott, Phys.Rev.Lett. 55 (1985) 2741; Physica D 20 (1986) 387.ADSCrossRefGoogle Scholar
  43. [43]
    P. Lévy, Théorie de l’addition des variables eléatoires. (Gauthier-Villiers, Paris, 1937); T. Geisel et al. Phys.Rev.Lett. 54 (1985) 616; R. Pasmanter, Fluid Dynamic Research 3 (1988) 320; R. Voss, Physica D 38 (1989) 362; G.M. Zaslavsky et al., Zh.Exper.Teor.Fiz. 96 (1989) 1563.CrossRefGoogle Scholar
  44. [44]
    H. Mori et al, Prog.Theor.Phys. Suppl., 1989, No.99, p.1.CrossRefGoogle Scholar
  45. [45]
    J. Greene et al. Physica D 21 (1986) 267.MathSciNetADSCrossRefMATHGoogle Scholar
  46. [46]
    C. Karney et al, ibid 4 (1982) 425.MathSciNetADSCrossRefMATHGoogle Scholar
  47. [47]
    Y. Ichikawa et al., ibid 29 (1987) 247.ADSCrossRefGoogle Scholar
  48. [48]
    P. de Gennes, Scaling Concepts in Polymer Physics. (Cornell Univ. Press., 1979).Google Scholar
  49. [49]
    D. Umberger and D. Farmer, Phys.Rev.Lett. 55 (1985) 661; G. Grebogi et al., Phys.Lett. A 110 (1985) 1.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Boris V. Chirikov
    • 1
  1. 1.Institute of Nuclear PhysicsNovosibirskUSSR

Personalised recommendations