Quasiperiodicity, Mode-Locking, and Universal Scaling in Rayleigh-Bénard Convection

  • Robert E. Ecke
Part of the NATO ASI Series book series (NSSB, volume 280)


Quasiperiodicity, mode-locking and universal scaling dynamics are described for Rayleigh-Bénard convection in a dilute solution of 3He in superfluid 4He. Examples from experimental data are used to illustrate analysis techniques of nonlinear dynamics: power spectra, phase space reconstruction, Poincaré sections, transients and stability eigenvalues, return maps, multifractal f(α) analysis, and scaling function dynamics. Using these tools we show that the route to chaos in this system of two intrinsic oscillatory modes has the same universality as the sine circle map.


Rayleigh Number Hopf Bifurcation Periodic Point Scaling Function Critical Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Huyghens, letter to his father, dated 26 Feb. 1665, Ouevres Completes de Christian Huyghens, (M. Nijhoff, Ed.), The Hague, The Netherlands: Societe Hollandaise des Sciences, 1893, vol. 5, p. 243.Google Scholar
  2. [2]
    R. Abraham and C. Shaw, ‘Dynamics: The Geometry of Motion’, Aerial Press (1981).Google Scholar
  3. [3]
    M. Peixoto, Structural Stability on Two Dimensional Manifolds, Topology 1:101 (1962).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    V.I. Arnold, Loss of Stability of Self-Oscillations Close to Resonance and Versal Deformations of Equivariant Vector Fields, Func. Anal. Appl. 11:1 (1977).CrossRefGoogle Scholar
  5. [5]
    R.E. Ecke, J.D. Farmer, and D.K. Umberger, Scaling of the Arnold Tongues, Non-linearity 2:175 (1989).MathSciNetADSMATHGoogle Scholar
  6. [6]
    D.G. Aronson, R.P. McGehee, I.G. Kevrekidis and R. Aris, Entrainment Regions for Periodically Forced Oscillators, Phys. Rev. 33A:2190 (1986).ADSGoogle Scholar
  7. [7]
    I.G. Kevrekidis, R. Aris, and L.D. Schmidt, Forcing an Entire Bifurcation Diagram: Case Studies in Chemical Oscillators, Physica 23D:391 (1986).MathSciNetADSGoogle Scholar
  8. [8]
    P. Bryant and C. Jeffries, The Dynamics of Phase Locking and Points of Resonance in a Forced Magnetic Oscillator, Physica 25D:196 (1987).MathSciNetADSGoogle Scholar
  9. [9]
    M.A. Taylor and I.G. Kevrekidis, Common Features of Coupled Oscillatory Reacting Systems, Physica D, to appear (1991).Google Scholar
  10. [10]
    S. Ostlund, D. Rand, J. Sethna, and E. Siggia, Universal Properties of the Transition from Quasiperiodicity to Chaos in Dissipative Systems, Physica 8D:303 (1983).MathSciNetADSGoogle Scholar
  11. [11]
    M. Jensen, P. Bak, and T. Bohr, Transition to Chaos by Interaction of Resonances in Dissipative Systems: I. Circle Maps, Phys. Rev. A30:1960 (1984).MathSciNetADSGoogle Scholar
  12. [12]
    P. Cvitanovic, M.H. Jensen, L.P. Kadanoff, and I. Procaccia, Renormalization, Unstable Manifolds and the Fractal Structure of Mode Locking, Phys. Rev. Lett. 55:343 (1985).MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    P. Cvitanovic, B. Shraiman, and B. Soderberg, Scaling Laws for Mode Lockings in Circle Maps, Phys. Scr. 32:263 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    S.J. Shenker, Scaling Behavior in a Map of a Circle onto Itself: Empirical Results, Physica 5D:405 (1982).MathSciNetADSGoogle Scholar
  15. [15]
    M.J. Feigenbaum, L.P. Kadanoff, and S.J. Shenker, Quasiperiodicity in Dissipative Systems: A Renormalization Group Analysis, Physica 5D:370 (1982).MathSciNetADSGoogle Scholar
  16. [16]
    K. Kaneko, ‘Collapse of Tori and Genesis of Chaos in Dissipative Systems’, World Scientific Pub., Singapore (1986).Google Scholar
  17. [17]
    J.D. Farmer, Sensitive Dependence on Parameters in Nonlinear Dynamics, Phys. Rev. Lett. 55:351 (1985).MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    R. Eykholt and D.K. Umberger, Characterization of Fat Fractals in Nonlinear Dynamical Systems, Phys. Rev. Lett. 57:2333 (1986).MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J.A. Glazier and A. Libchaber, Quasiperiodicity and Dynamical Systems: An Experimentalist’s View, IEEE Trans. Cir. Sys. 35:790 (1988).MathSciNetCrossRefGoogle Scholar
  20. [20]
    J. Maurer and A. Libchaber, Rayleigh-Bénard Experiment in Liquid Helium; Frequency Locking and the Onset of Turbulence, J. Physique Lett. (Paris) 40:L-419 (1979).CrossRefGoogle Scholar
  21. [21]
    J.P. Gollub and S.V. Benson, Many Routes to Turbulent Convection, J. Fluid Mech. 100:449 (1980).ADSCrossRefGoogle Scholar
  22. [22]
    M. Sano and Y. Sawada, Experimental Study on Poincaré Mappings in Rayleigh-Benard Convection, in Turbulence and Chaotic Phenomena in Fluids, ed. by T. Tatsumi (North Holland, Amsterdam, 1983).Google Scholar
  23. [23]
    A.P. Fein, M.S. Heutmaker and J.P. Gollub, Scaling at the Transition from Quasiperiodicity to Chaos in a Hydrodynamic System, Phys. Scr. T9:79 (1985).ADSCrossRefGoogle Scholar
  24. [24]
    J. Stavans, F. Heslot, and A. Libchaber, Fixed Winding Number and the Quasiperiodic Route to Chaos in a Convecting Fluid, Phys. Rev. Lett. 55:596 (1985).ADSCrossRefGoogle Scholar
  25. [25]
    J. Stavans, Experimental Study of Quasiperiodicity in a Hydrodynamic System, Phys. Rev. A35:4314 (1987).ADSGoogle Scholar
  26. [26]
    G.A. Held and C. Jeffries, Quasiperiodic Transitions to Chaos of Instabilities in an Electron-Hole Plasma Excited by ac Perturbations at One and Two Frequencies, Phys. Rev. Lett. 56:1183 (1986).ADSCrossRefGoogle Scholar
  27. [27]
    S. Martin and W. Martienssen, Circle Maps and Mode Locking in the Driven Electrical Conductivity of Barium Sodium Niobate Crystals, Phys. Rev. Lett. 56:1522 (1986).ADSCrossRefGoogle Scholar
  28. [28]
    E. G. Gwinn and R. M. Westervelt, Frequency Locking, Quasiperiodicity, and Chaos in Extrinsic Ge, Phys. Rev. Lett. 57:1060 (1986).ADSCrossRefGoogle Scholar
  29. [29]
    E. G. Gwinn and R. M. Westervelt, Scaling Structure of Attractors at the Transition from Quasiperiodicity to Chaos in Electronic Transport in Ge, Phys. Rev. Lett. 59:157 (1987).ADSCrossRefGoogle Scholar
  30. [30]
    A. Cummings and P.S. Linsay, Deviations from Universality in the Transition from Quasiperiodicity to Chaos, Phys. Rev. Lett. 59:1633 (1987).ADSCrossRefGoogle Scholar
  31. [31]
    Z. Su, R.W. Rollins, and E.R. Hunt, Measurements of f(α) Spectra of Attractors at Transitions to Chaos in Driven Diode Resonator Systems, Phys. Rev. A36:3515 (1987).ADSGoogle Scholar
  32. [32]
    D. Olinger and K. Sreenivasan, Nonlinear Dynamics of the Wake of an Oscillating Cylinder, Physical Review Letters 60:797 (1988).ADSCrossRefGoogle Scholar
  33. [33]
    D. Baums, W. Elsasser and E. Gobel, Farey Tree and Devil’s Staircase of a Modulated External Cavity Semiconductor Laser, Phys. Rev. Lett. 63:155 (1989).ADSCrossRefGoogle Scholar
  34. [34]
    T. Yazaki. S. Takishima, and F. Mizutani, Complex Quasiperiodic and Chaotic States Observed in Thermally Induced Oscillations of Gas Columns, Phys. Rev. Lett. 58:1108 (1987).ADSCrossRefGoogle Scholar
  35. [35]
    T. Yazaki. S. Sugioka, F. Mizutani, and H. Mamada, Nonlinear Dynamics of a Forced Thermoacoustic Oscillation, Phys. Rev. Lett. 64:2515 (1990).ADSCrossRefGoogle Scholar
  36. [36]
    B. Shraiman, Transition from Quasiperiodicity to Chaos: A Perturbative Renormalization Group Approach, Phys. Rev. A29:3464 (1984).MathSciNetADSGoogle Scholar
  37. [37]
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.L Shraiman, Fractal Measures and their Singularities: The Characterization of Strange Sets, Phys. Rev. A33, 1141 (1986).MathSciNetADSGoogle Scholar
  38. [38]
    M.H. Jensen, L.P. Kadanoff, A. Libchaber, I. Procaccia, and J. Stavans, Global Universality at the Onset of Chaos: Results of a Forced Rayleigh-Bénard Experiment, Phys. Rev. Lett. 55:2798 (1985).ADSCrossRefGoogle Scholar
  39. [39]
    Nonuniversal behavior in the fractal dimension of the devils staircase reported in [30] was later shown [40] to be due to the scheme used to compute the fractal dimension; a complete multifractal f(α) analysis yields excellent agreement between experiment and theory.Google Scholar
  40. [40]
    D. Barkley and A. Cummings, Thermodynamics of the Quasiperiodic Parameter Set at the Borderline of Chaos: Experimental Results, Phys. Rev. Lett. 64:327 (1990).ADSCrossRefGoogle Scholar
  41. [41]
    H. Haucke and R. Ecke, Mode Locking and Chaos in Rayleigh-Bénard Convection, Physica 25D:307 (1987).ADSGoogle Scholar
  42. [42]
    R. Mainieri, T.S. Sullivan, and R.E. Ecke, Two-Parameter Study of the Quasiperiodic Route to Chaos in Convecting 3He-Superfluid-4He Mixtures, Phys. Rev. Lett. 63:2357 (1989).ADSCrossRefGoogle Scholar
  43. [43]
    R.E. Ecke, R. Mainieri, and T.S. Sullivan, Universality in Quasiperiodic Rayleigh-Bénard Convection, in preparation.Google Scholar
  44. [44]
    J. Peinke, J. Parisi, R.P. Huebner, M. Duong-van and P. Keller, Quasiperiodic Behavior of d.c.-Biased Semiconductor Br akdown, Euro. Phys. Lett. 12:13 (1990).ADSCrossRefGoogle Scholar
  45. [45]
    M. Bauer, U. Krueger, and W. Martienssen, Experimental Studies of Mode-Locking and Circle Maps in Inductively Shunted Josephson Junctions, Europhys. Lett. 9:191 (1989).ADSCrossRefGoogle Scholar
  46. [46]
    H. Haucke, Y. Maeno, R.E. Ecke, and J. Wheatley, Noise-induced Intermittency in Rayleigh-Benard Convection, Phys. Rev. Lett. 53:2090 (1984).ADSCrossRefGoogle Scholar
  47. [47]
    H. Haucke, R.E. Ecke, and J.C. Wheatley, Dimension and Entropy for Quasiperiodic and Chaotic Convection, in Dimension and Entropies in Chaotic Systems, ed. by G. Mayer-Kress, (Springer Verlag, Berlin, 1986) p. 198.Google Scholar
  48. [48]
    R.E. Ecke and I.G. Kevrekidis, Interactions of Resonances and Global Bifurcations in Rayleigh-Bénard Convection, Phys. Lett. 131A:344 (1988).ADSGoogle Scholar
  49. [49]
    R.E. Ecke and H. Haucke, Noise-induced Intermittency in the Quasiperiodic Regime of Rayleigh-Bénard Convection, J. Stat. Phys. 54:1153 (1989).MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    I.G. Kevrekidis and R.E. Ecke Global Bifurcations in Maps of the Plane and in Rayleigh-Bénard Convection, Cont. Math. 99:313 (1989).MathSciNetCrossRefGoogle Scholar
  51. [51]
    Y. Maeno, H. Haucke, R.E. Ecke, and J.C. Wheatley, Oscillatory Convection in a Dilute 3He-Superfluid-4He Solution, J. Low Temp. Phys. 59:305 (1985).ADSCrossRefGoogle Scholar
  52. [52]
    G. Metcalf and R. Behringer, Convection in 3He-Superfluid-4He Mixtures: Measurement of Superfluid Effects, Phys. Rev. A41:5735 (1990).ADSGoogle Scholar
  53. [53]
    N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Shaw, Geometry from a Time Series, Phys. Rev. Lett. 45:712 (1980).ADSCrossRefGoogle Scholar
  54. [54]
    A. Fraser and H.L. Swinney, Independent Coordinates for Strange Attractors from Mutual Information, Phys. Rev. A33:1134 (1986).MathSciNetADSGoogle Scholar
  55. [55]
    J.-P. Eckmann and D. Ruelle, Ergodic Theory of Chaos and Strange Attractors, Rev. Mod. Phys. 57:617 (1985).MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    F. Harris, On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform, Proc. IEEE 66:51 (1978).ADSCrossRefGoogle Scholar
  57. [57]
    R.E. Ecke, Y. Maeno, H. Haucke, and J.C. Wheatley, Critical Dynamics near the Oscillatory Instability in Rayleigh-Bénard Convection, Phys. Rev. Lett. 53:1567 (1984).ADSCrossRefGoogle Scholar
  58. [58]
    R.E. Ecke, H. Haucke, Y. Maeno and J.C. Wheatley, Critical Dynamics at a Hopf Bifurcation to Oscillatory Rayleigh-Bénard Convection, Phys. Rev. A33:1870 (1986).ADSGoogle Scholar
  59. [59]
    R.J. Deissler, R.E. Ecke, and H. Haucke, Universal Scaling and Transient Behavior of Temporal Modes hear a Hopf Bifurcation: Theory and Experiment, Phys. Rev. 36A:4390 (1987).ADSGoogle Scholar
  60. [60]
    D. Rand, Universality for the Breakdown of Dissipative Golden Invariant Tori, Proceedings of the Eighth International Congress of Mathematical Physics, ed. by M. Mebkhout and R. Seneor, (World Scientific, Singapore, 1987).Google Scholar
  61. [61]
    X. Wang, R. Mainieri, and J.H. Lowenstein, Circle Map Scaling in a Two-Dimensional Setting, Phys. Rev. A40:5382 (1989).MathSciNetADSGoogle Scholar
  62. [62]
    T. Bohr, P. Bak, and M. Jensen, Transition to Chaos by Interaction of Resonances in Dissipative Systems: II Josephson Junctions, Charge-Density Waves, and Standard Maps, Phys. Rev. A30:1970 (1984).MathSciNetADSGoogle Scholar
  63. [63]
    T. Bohr, Destruction of Invariant Tori as an Eigenvalue Problem, Phys. Rev. Lett. 54:1737 (1985).MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    D.G. Aronson, M.A. Ghory, G.R. Hall, and R.P. McGehee, Bifurcations from an Invariant Circle for Two-Parameter Families of Maps of the Plane: A Computer-Assisted Study, Commun. Math. Phys. 83:303 (1982).ADSMATHCrossRefGoogle Scholar
  65. [65]
    Mitchell J. Feigenbaum, The Transition to Aperiodic Behavior in Turbulent Systems, Commun. Math. Phys., 77:65, 1980.MathSciNetADSMATHCrossRefGoogle Scholar
  66. [66]
    J.L. McCauley, Introduction to Multifractals in Dynamical Systems Theory and Fully Developed Turbulence, Phys. Rpts. 189:225 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  67. [67]
    D. Ruelle, ‘Thermodynamic Formalism’, Addison-Wesley, Reading (1978).Google Scholar
  68. [68]
    M. J. Feigenbaum, Some Characterizations of Strange Sets, J. Stat. Mech. 46:919 (1987).MathSciNetADSMATHGoogle Scholar
  69. [69]
    M. J. Feigenbaum, Scaling Spectra and Return Times of Dynamical Systems, J. Stat. Mech. 46:925 (1987).MathSciNetADSMATHGoogle Scholar
  70. [70]
    M. J. Feigenbaum, Scaling Function Theory for Circle Maps, Nonlinearity 1:577 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  71. [71]
    A. Belmonte, M.J. Vinson, J.A. Glazier, G.H. Gunaratne, and B.G. Kenny, Trajectory Scaling Functions at the Onset of Chaos: Experimental Results, Phys. Rev. Lett. 61:539 (1988).ADSCrossRefGoogle Scholar
  72. [72]
    A. Chhabra and R.V. Jensen, Direct Determination of the f(α) Singularity Spectrum, Phys. Rev. Lett. 62:1327 (1989).MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    M. J. Feigenbaum, M. Jensen, and I. Procaccia, Time Ordering and the Thermodynamics of Strange Sets: Theory and Experimental Tests, Phys. Rev. Lett. 57:1503 (1986).MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    A. Arneodo and M. Holschneider, Crossover Effect in the f(α) Spectrum for Quasiperiodic Trajectories at the Onset of Chaos, Phys. Rev. Lett. 58:2007 (1987).MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    J. Glazier, G. Gunaratne, and A. Libchaber, f(α) Curves: Experimental Results, Phys. Rev. A37:523 (1988).ADSGoogle Scholar
  76. [76]
    D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Gunaratne, and I. Procaccia, Exploring Chaotic Motion Through Periodic Orbits, Phys. Rev. Lett. 58:2387 (1987).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robert E. Ecke
    • 1
  1. 1.Physics Division and Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations