Advertisement

Renormalization, Zygmund Smoothness and the Epstein Class

  • D. Sullivan
Part of the NATO ASI Series book series (NSSB, volume 280)

Abstract

To randomize a deck of n-cards one may turn over one of the split stacks before shuffling. The resulting permutation of order n if irreducible is called a folding permutation because it may be accomplished by a continuous mapping f of the real line to itself which folds the line once. The orbit of the turning point is finite and f restricted to this finite orbit is the folding permutation.

Keywords

Cross Ratio Quasi Conformal Mapping Folding Mapping Differentiable Structure Smoothness Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CT]
    P. Coullet and C. Tresser. “Iteration d’endomorphismes et groupe de renormalisation”. J. de Physique Colloque C 539, C5–25 (1978). CRAS Paris 287 A, (1978).Google Scholar
  2. [CEK]
    P. Collet, J.-P. Eckmann and H. Koch. “Period-doubling bifurcations for families of maps on R n”. J. Stat. Phys. 25, 1–14 (1980).MathSciNetADSCrossRefGoogle Scholar
  3. [E]
    H. Epstein. “New proofs of the existence of the Feigenbaum functions”. Commun. Math. Phys., 106, 395–426 (1986).ADSMATHCrossRefGoogle Scholar
  4. [F1]
    M.J. Feigenbaum. “Quantitative universality for a class of non-linear transformation”. J. Stat. Phys. 19. 25–52 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  5. [F2]
    M.J. Feigenbaum. “Universal metric properties of non-linear transformations”. J. Stat. Phys. 21, 669–706 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  6. [MV]
    W de Melo and S. Van Strien. “Schwarzian derivative and beyond”. Bull Amer Math Soc 18, 159–162 (1988).MathSciNetMATHCrossRefGoogle Scholar
  7. [S1]
    D. Sullivan D. “Bounds, quadratic, differentials, and renormalization conjectures”. To appear in AMS volume (2) (1991) celebrating the Centennial of the American Mathematical Society.Google Scholar
  8. [S2]
    D. Sullivan. “Quasiconformal homeomorphisms in dynamics, topology, and geometry”. ICM Berkeley 1986.Google Scholar
  9. [S3]
    D. Sullivan. “Differentiable structures on fractal like sets”. In: Non-linear Evolution and Chaotic Phenomena, G. Gallavotti and P. Zweifel, eds., New-York, Plenum (1988). See also Herman Weyl Centenary Volume.Google Scholar
  10. [SW]
    G. Swiatek “Critical Circle Maps”. Commun. Math. Phys. 119.109–128 (1988).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • D. Sullivan
    • 1
  1. 1.THESBures sur YvetteFrance

Personalised recommendations