Advertisement

Coupled Map Lattice

  • Kunihiko Kaneko
Part of the NATO ASI Series book series (NSSB, volume 280)

Abstract

In the first two lectures of the summer school, I have reported the studies of spatiotemporal chaos with the use of coupled map lattices (CML). On the first lecture, I have shown some qualitative results of CMLs. Since some of the inovating features in CML modelling are not recognized, some questions and answers are listed up here, starting from the most trivial one.

Keywords

Lyapunov Exponent Cellular Automaton System Size Cellular Automaton Absolute Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Kaneko, Prog. Theor. Phys. 72 (1984) 480, 74 (1985) 1033; in Dynamical Problems in Soliton Systems (Springer, 1985, ed. S. Takeno) 272-277ADSMATHCrossRefGoogle Scholar
  2. [2]
    K. Kaneko, Ph. D. Thesis, Collapse of Tori and Genesis of Chaos in Dissipative Systems, 1983 (enlarged version is published by World Sci. Pub., 1986)Google Scholar
  3. [3]
    K. Kaneko, Physica 23D (1986) 436ADSGoogle Scholar
  4. [4]
    K. Kaneko, Physica 34D (1989) 1; Europhys. Lett. 6 (1988) 193; Phys. Lett. 125 A (1987) 25ADSGoogle Scholar
  5. [5]
    J. P. Crutchfield and K. Kaneko, “Phenomenology of Spatiotemporal Chaos”, in Directions in Chaos (World Scientific, 1987) 272Google Scholar
  6. [6]
    K. Kaneko, Phys. Lett. 111A (1985) 321ADSGoogle Scholar
  7. [7]
    R.J. Deissler and K. Kaneko, Phys. Lett. 119A (1987) 397MathSciNetADSGoogle Scholar
  8. [8]
    R. J. Deissler, Phys. Lett. 120A (1984) 334: I. Waller and R. Kapral, Phys. Rev. 30A (1984) 2047: Y.Oono and S. Puri, Phys. Rev. Lett. 58 (1986)836; T. Bohr and O.B Christensen, Phys. Rev. Lett. 63 (1989) 2161MathSciNetADSGoogle Scholar
  9. [9]
    J. D. Keeler and J. D. Farmer, Physica 23D (1986) 413MathSciNetADSGoogle Scholar
  10. [10]
    H. Chate and P. Manneville, Europhys. Lett. 6 (1988) 59; Physica 32D (1988) 409CrossRefGoogle Scholar
  11. [11]
    J.P. Crutchfield and K. Kaneko, Phys. Rev. Lett. 60 (1988) 2715MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    L.A. Bunimovich and Ya.G. Sinai, Nonlinearity 1 (1989) 491MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    G. Mayer-Kress and K. Kaneko, J. Stat. Phys., 54 (1989) 1489MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    K. Kaneko, Phys. Lett. 139A (1989) 47; J.M. Houlrik, I. Webman, and M. H. Jensen, Phys. Rev. 41A (1990) 4210ADSGoogle Scholar
  15. [15]
    K. Kaneko, “Simulating Physics with Coupled Map Lattices” in Formation, Dynamics, and Statistics of Patterns, 1 (ed. K. Kawasaki, A. Onuki, and M. Suzuki, World. Sci. 1990)Google Scholar
  16. [16]
    K. Kaneko “Climbing Up Dynamical Hierarchy”, in Chaotic Hierarchy (ed. G. Baier and M. Klien, World. Sci. 1990)Google Scholar
  17. [17]
    K. Kaneko, Phys. Rev. Lett. 63 (1989) 219; Physica 41 D (1990) 137; Phys. Rev. Lett. 65 (1990) 1391MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    K. Kaneko, Prog. Theor. Phys. Suppl. 99 (1989) 263CrossRefGoogle Scholar
  19. [19]
    K. Kaneko, Phys. Lett. A (1990) in pressGoogle Scholar
  20. [20]
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959) Chapt.3Google Scholar
  21. [21]
    D. Ruelle and F. Takens, Comm. Math. Phys. 20 (1971) 167; 23 (1971) 343MathSciNetADSMATHCrossRefGoogle Scholar
  22. [22]
    O.E. Rössler, Phys. Lett. 71 A (1979) 155; in Lecture Notes in Applied Math., 17 (1979) 141-156; Z. Naturforschung 38a (1983) 788ADSGoogle Scholar
  23. [23]
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibirum Systems, (John Wiley and Sons, 1977)Google Scholar
  24. [24]
    S.P. Kuznetsov, Radiophysics 29 (1986) 888 ( in Russian)Google Scholar
  25. [25]
    H. Kook, F.H. Ling and G. Schmidt, preprint (1990)Google Scholar
  26. [26]
    LS. Aronson, A.V. Gaponov-Grekhov, and M.I. Rabinovich, Physica 33D (1988) 1Google Scholar
  27. [27]
    M.J. Feigenbaum, J. Stat. Phys. 21 (1979) 669MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    Y. Aizawa, I. Nishikawa, and K. Kaneko, Physica D, in press (1990)Google Scholar
  29. [29]
    See M.H. Jensen, Phys. Rev. Lett. 62 (1989) 1361 for an extension of open flow model in 2-dimensional intermittency, with a possible relation with Benard convectionADSCrossRefGoogle Scholar
  30. [30]
    K. Kaneko, Physica 37D (1989) 60ADSGoogle Scholar
  31. [31]
    R. Kapral, Phys. Rev. 31A (1985) 3868MathSciNetADSGoogle Scholar
  32. [32]
    P. Grassberger, in one of the lectures given at the summer school (Como, 1990)Google Scholar
  33. [33]
    T. Schreiber, J. Phys. 23A (1990) 393MathSciNetADSGoogle Scholar
  34. [34]
    S. Ciliberto and P. Bigazzi, Phys. Rev. Lett. 60 (1988) 286ADSCrossRefGoogle Scholar
  35. [35]
    S. Nasuno, M. Sano, Y. Sawada, in Cooperative Dynamics in Complex Systems, (ed. H. Takayama, Springer, 1989)Google Scholar
  36. [36]
    F. Daviaud, M. Dubois, P. Berge, Europhys. Lett. 9 (1989) 441ADSCrossRefGoogle Scholar
  37. [37]
    J. Gollub and R. Ramshankar, in New Perspectives in Turbulence (eds. S. Orszag and L. Sirovich, Springer)Google Scholar
  38. [38]
    Y. Couder, in one of the lectures given at the summer school (Como, 1990)Google Scholar
  39. [39]
    P. Manneville, in Macroscopic Modelling of Turbulent Flows, (eds. U. Frisch et al., Lecture Notes in Physics 230; Springer, 1985)Google Scholar
  40. [40]
    M. Yamada and K. Ohkitani, Phys. Rev. Lett. 60 (1988) 983MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kunihiko Kaneko
    • 1
  1. 1.University of TokyoKomaba, Meguro-ku, Tokyo 153Japan

Personalised recommendations