Methanogenesis in the Rumen: Mass Spectrometric Monitoring

  • D. Lloyd
  • A. G. Williams
  • K. Hillman
  • T. N. Whitmore


The rumen is the most economically-important of all natural fermentation systems. The productivity of cattle, sheep and goats, and of ruminant wild animals, depends on the efficiency of its microbial interconversions, especially the production of low molecular weight compounds from plants such as cellulose and hemicellulose polymers (Hungate, 1966; Hobson, 1976). In the sheep, the volume of the rumen is 6–101, and in the cow is about 100. A highly complex population of symbiotic microorganisms carries out these processes, and although the overall balances of inputs and outputs have been intensively studied, many datails await elucidation. Rumen fluid is rich in volatile fatty acids and vitamins, but for much of the day is starved of starch, glucose and other readily metabolised nutrients. Even some fundamental aspects of the fermentations are only becoming appreciated very recently. For example, approximately one half of the biomass of organisms within the rumen is accounted for by the protozoa (Williams, 1986). Selective removal of these organisms (“defaunation”) leads to their replacement by bacteria, and the host mammal apparently suffers little nutritional imbalance as a consequence.What then is the exact function of the rumen protoza?


Anaerobic Digester Rumen Fluid Rumen Fermentation Methanosarcina Barkeri Membrane Inlet Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohatka, S., Langer, G., Szilagyi, J. and Bercz, I., 1983, Gas concentration determination in fermenters with quadrupole mass spectrometer. Int. T. Mass Spectrom. Ion Phys., 48: 277.CrossRefGoogle Scholar
  2. Czerkawski, J.W. and Breckenridge, G., 1969, The effect of oxygen on fermentation of sucrose by rumen micro-organisms in vitro. Brit. T. Nutr., 23: 67.Google Scholar
  3. Czerkawski, J.W. and Breckenridge, G., 1977, Design and development of a long term rumen simulation technique (RUSITEC). Brit. T. Nutr., 38: 371.CrossRefGoogle Scholar
  4. Hillman, K., Lloyd, D. and Williams, A.G., 1985a, Continuous monitoring of fermentation gases in an artificial rumen system (RUSITEC) using a membrane-inlet probe on a portable mass spectrometer, in: “Gas Enzymology” H. Degn, R.P. Cox and H. Toftlund, ed., Reidel, Dordrecht.Google Scholar
  5. Hillman, K., Lloyd, D. and Williams, A.G., 1985b, Use of a portable quadrupole mass spectrometer for the measurement of dissolved gas concentration in bovine rumen liquor in situ. Current Microbiol, 12: 335.CrossRefGoogle Scholar
  6. Hillman, K., Lloyd, D., Scott, R.I. and Williams, A.G., 1985c, The effects of oxygen on hydrogen production by rumen holotrich protozoa, as determined by membrane-inlet mass spectrometry, in: “Microbial Gas Metabolism: Mechanistic Metabolic and Biotechnical Aspects”, R.K. Poole and C. Dow, eds., Academic Press, London.Google Scholar
  7. Hobson, P.N., 1976, “The Microflora of the Rumen”, Meadowfield Press, London. Hungate, R.E., 1966, “The Rumen and its Microbes”, Academic Press, New York.Google Scholar
  8. Hungate, R.E., 1967, Hydrogen as an intermediate in the rumen fermentation. Arch. Microbiol., 59: 158.CrossRefGoogle Scholar
  9. Jouany, J.P. and Senaud, J., 1979, Defaunation de rumen de mouton. Ann. Biol. Anim. Biochim. Biophys., 19: 619.CrossRefGoogle Scholar
  10. Lloyd, D., Bohatka, S. and Szilagyi, J., 1985a, Quadrupole mass spetrometry in the monitoring and control of fermentations. Biosensors, 1: 179.CrossRefGoogle Scholar
  11. Lloyd, D., Davies, K.J.P. and Boddy, L., 1986, Mass spectrometry as an ecological tool for in situ measurements of dissolved gases in sediment systems. FEMS Microbiol. Ecol., 38: 11.CrossRefGoogle Scholar
  12. Lloyd, D., James, C.J. and Hastings, J.W., 1985b, Oxygen affinities of the bioluminescence systems of various species of luminous bacteria. T. Gen. Microbiol., 131: 2137.Google Scholar
  13. Lloyd, D., James, K., Williams, J. and Williams, N., 1981, A membrane-covered photobacterium probe for oxygen measurements in the nanomole range. Anal. Biochem., 116: 17.CrossRefGoogle Scholar
  14. Lloyd, D., Mellor, H. and Williams, J.L., 1983, Oxygen affinity of the respiratory chain of Acanthamoeba castellanii. Biochem. T., 214: 47.Google Scholar
  15. Lloyd, D. and Scott, R.I., 1983, Direct measurememt of dissolved gas in microbiological systems using membrane inlet mass spectrometry. T. Microb. Meth., 1: 313.CrossRefGoogle Scholar
  16. Lloyd, D., Williams, J.L., Yarlett, M. and Williams, A.G. 1982 Oxygen affinities of the hydrogenosome-containing protozoa, Tritrichomonas foetus and Dasytricha fuminantium determined by bacterial bioluminescence. T. Gen. Microbiol., 128: 1019.Google Scholar
  17. Orpin, C., 1975, Studies on the rumen flagatelle Neocallimastix frontalis. T. Gen. Microbiol., 91: 249.Google Scholar
  18. Scott, R.I., Williams, T.N. and Lloyd, D., 1983a, Oxygen sensitivity of methanogenesis in rumen and anaerobic digester populations using mass spectrometry. Biotechnol. Lett., 5: 375.CrossRefGoogle Scholar
  19. Scott, R.I., Yarlett, N., Hillman, K., Williams, T.N., Williams, A.G. and Lloyd, D., 1983b, The presence of oxygen in rumen liquor and its effects on methanogesis. T. Appl. Bacteriol., 55: 143.CrossRefGoogle Scholar
  20. Williams, A.G., 1986, Rumen holotrich ciliate protozoa. Microbiol. Rev., 50: 25.Google Scholar
  21. Williams, A.G. and Harfoot, C.G., 1976, Factors affecting the uptake and metabolism of soluble carbohydrate by the rumen ciliate Dasytricha ruminantium. T. Gen. Microbiol, 96: 125.Google Scholar
  22. Williams, A.G. and Yarlett, N., 1982, An improved technique for the isolation of protozoa from rumen contents by differential filtration with defined aperture textiles. T. Appl. Bact, 52: 267.CrossRefGoogle Scholar
  23. Yarlett, N., Lloyd, D. and Williams, A.G., 1982, Respiration of the rumen ciliate Dasytricha ruminantium Schuberg. Biochem. T., 206: 259.Google Scholar
  24. Yarlett, N., Scott, R.I., Williams, A.G. and Lloyd, D., 1983, A note on the effects of oxygen on hydrogen production by the rumen protozoa Dasytricha ruminantium. T. Appl. Bacteriol, 55: 359.CrossRefGoogle Scholar
  25. Yarlett, N., Rowlands, C., Yarlett, N.C., Evans, J.C. and Lloyd, D., 1987, Respiration of the hydrogenosome-containing fungus Neocallimastix frontalis (submitted for publication).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • D. Lloyd
    • 1
  • A. G. Williams
    • 1
  • K. Hillman
    • 1
  • T. N. Whitmore
    • 1
  1. 1.Microbiology DepartmentUniversity CollegeCardiffUK

Personalised recommendations