Advertisement

Differentiation of Phage Sensitive and Phage Resistant Streptococcus Cremoris Strains by Pyrolysis Mass Spectrometry and Discriminant Analysis of the Cell Walls

  • Jaap J. Boon
  • B. Brandt-de Boer
  • G. B. Eijkel
  • Elly Vlegels
  • Lolke Sijtsma
  • Jan T. M. Wouters

Summary

Cell wall preparations of variants from four different Streptococcus cremoris strains R1, 4, 10 and 40 were investigated by classical microbiological techniques and by pyrolysis mass spectrometry combined with multivariate analysis. Discriminant analytical data correlated highly with plaque forming ability, pointing to chemical differences between the cell walls of phage sensitive and phage resistant variants.

Pyrolysis gas chromatographic mass spectrometric data on a wild type strain (10) and one of its phage resistant variants confirmed the differences in mass peak distribution in the PYMS data and allowed the extrapolation to the chemistry of the cell wall. Incubation of the strains with their homologous phages selects for phage resistant variants with a markedly different ratio between peptidoglycan and rhamnose rich nonpeptidoglycan polymers. A protection of the receptor sites on the cell walls of phage resistant variants by their nonpeptidoglycan polymers is proposed as the main mechanism of phage resistance.

Keywords

Pyrolysis Product Mass Peak Mass Chromatogram Analytical Pyrolysis Cell Wall Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald, A.R., 1974, The structure, biosynthesis and function of teichoic acid. Adv. Microbial Physiol., 11: 53–95.CrossRefGoogle Scholar
  2. Boon, J.J., Tom, A., Eijkel, G.B., Kistemaker, P.G., Notten, F.J.W. and Mikx, F.H.M., 1984, Mass spectrometric and factor discriminant analysis of complex organic matter from the bacterial culture environment of Bacteroides gingivalis. Anal. Chim. Acta, 163: 193–205.CrossRefGoogle Scholar
  3. Boon, J.J., Pouwels, A.D. and Eijkel, G.B., 1986, Pyrolysis high resolution GCMS studies on beech wood I. Capillary high resolution MS of a beech lignin fraction. Trans. Biochem. Soc., 15: 170–174.Google Scholar
  4. Colman, G. and Williams, R.E.D.,1965, The cell walls of Streptococci. T. Gen. Microbiol., 41: 375–387.Google Scholar
  5. Franich, R.A., Goodin, S.J. and Wilkins, A.L., 1984, Acetamidofurans, Acetamidopyrones and Acetamidoacetaldehyde from pyrolysis of chitin and N-Acetylglucosamine. T. Anal. Appl. Pyrol., 7: 91–100.CrossRefGoogle Scholar
  6. Genuit, W.J.L. and Boon,J.J., 1985, Pyrolysis gas chromatography-photoionizationmass spectrometry a new approach in the analysis of macromolecular materials. T. Anal. Appl. Pyrol., 8: 25–40.CrossRefGoogle Scholar
  7. Genuit, W.J.L., Boon, J.J. and Faix, O., 1987, Characterisation of beech milled wood lignin by pyrolysis gas chromatography photoionization mass spectrometry. Anal. Chem., 59, in pressGoogle Scholar
  8. Hoogerbrugge, R., Willig, S.J. and Kistemaker, P.G., 1984, Discriminant analysis by double stage principal component analysis. Anal. Chem., 55: 1711–1712.Google Scholar
  9. Johnson,K.G. and Mc Donald, I.J., 1974, Peptidoglycan structure in cell walls of parental and filamentous Streptococcus cremoris HP. Can. J. Microbiol., 20: 905–913.CrossRefGoogle Scholar
  10. Kenne, L. and Lindberg, B., 1983, In: G.O.Aspinall (Ed.), “The Polysaccharides”, Vol. 2. Academic Press, New York. p. 332–341.Google Scholar
  11. Klaenhammer, T.R., 1984, Interactions of bacteriophages with lactic streptococci. Adv. Appl. Microbiol., 30: 1–29.CrossRefGoogle Scholar
  12. Koell, P. and Metzger, J., 1978, Angew. Chem., 90: 802–804.CrossRefGoogle Scholar
  13. Lawrence, R.C., Thomas, T.D. and Terzaghi, B.E., 1976, Cheese starters. T. Dairy Res., 43: 141–193.CrossRefGoogle Scholar
  14. Meuzelaar, H.L.C., Haverkamp, J. and Hileman, F.D., 1982, “Pyrolysis mass spectrometry of recent and fossil biomaterials”, Elsevier, Amsterdam, 293 pp.Google Scholar
  15. Shafizadeh, F., Furneaux, R.H., Stevenson, T.T. and Cochran, T.G., 1978, 1,5anhydro-4-deoxy-D-glycero-hex-1-en-3-ulose and other pyrolysis products of cellulose. Carbohydrate Res., 67: 433–447.CrossRefGoogle Scholar
  16. Terzaghi, B.E. and Sandine, W.E., 1975, Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol., 29: 807–813.Google Scholar
  17. Ugalde,R.A., Handelsman, J. and Brill, W.J., 1986, Role of galactosyl transferase activity in phage sensitivity and nodulation competiveness of Rhizobium meliloti. T. Bac., 166: 148–154.Google Scholar
  18. Van der Kaaden, A., Boon, J.J., de Leeuw, J.W., de Lange, F., Schuyl, P.J.W., Schulten, H.-R. and Bahr, U., 1984, Comparison of analytical pyrolysis techniques in the characterisation of chitin. Anal. Chem., 56: 2160–2164.CrossRefGoogle Scholar
  19. Vlegels, P.A.P. and Wouters, J.T.M., 1985, Bacteriophage resistance of Streptococcus cremoris. Antonie van Leeuwenhoek., 51: 557.CrossRefGoogle Scholar
  20. Vlegels, P.A.P., Sterkenburg, A., Sijtsma, L. and Wouters, J.T.M., 1986, Phage resistance in Streptococcus cremoris. Antonie van Leeuwenhoek., 52: 365–366.Google Scholar
  21. Vlegels P.A.P. and Wouters, J.T.M., 1986, Phage resistance in Streptococcus cremoris. SGM meeting, Warwick, Abstracts Booklet, p. 71.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jaap J. Boon
    • 1
  • B. Brandt-de Boer
    • 1
  • G. B. Eijkel
    • 1
  • Elly Vlegels
    • 2
  • Lolke Sijtsma
    • 2
  • Jan T. M. Wouters
    • 2
  1. 1.Mass Spectrometry of Macromolecular SystemsFOM Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands
  2. 2.Laboratory of MicrobiologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations