Protein Phosphorylation/Dephosphorylation and Reversible Phosphoprotein Binding in Rhabdomeric Photoreceptors

  • Joachim Bentrop
  • Reinhard Paulsen
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 135)


In the rhabdomeric photoreceptors of invertebrates, the transduction machinery is located in the rhabdomere, a part of the cell which is elaborated into a stack of photosensitive microvilli. The activation of the phototransduction mechanism causes this photoreceptor cell to depolarize, i.e., cation channels open in response to light. Recent progress in the biochemistry of invertebrate photoreceptors suggests that at least the molecular events leading to the activation of the phototransduction process are similar to that verified for the light-triggered enzyme cascade of the ciliary photoreceptors of vertebrates. It is a particular property of many invertebrate visual pigment systems, that the transduction mechanism is triggered by the conversion of rhodopsin (P) into a long-lived (thermostable) metarho- dopsin (M)1,2. M in turn, is reconverted by light to P. This photoregeneration constitutes one of the main pathways of visual pigment regeneration in the living animal3. As photoregeneration is also possible in isolated membranes, invertebrate photoreceptors offer the unique opportunity to study the reversibility of reactions coupling photochemical and enzymatic transduction steps. This for example permits one to investigate the interaction of M with other proteins and to characterize the reactions leading to a reversible inactivation of the photoactivated rhodopsin state.


Visual Pigment Photoreceptor Membrane Transduction Machinery Phosphate Binding Site Visual Transduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Hamdorf, The physiology of invertebrate visual pigments, in “Vision in Invertebrates (Handbook of Sensory Physiology, Vol. VII 6 A)” H. Autrum, ed.. Springer Verlag, Berlin, New York.Google Scholar
  2. 2.
    P. Hillman, S. Hochstein and B. Minke, Transduction in invertebrate photoreceptors: Role of pigment bistability, Physiol. Rev. 63;668 (1983).PubMedGoogle Scholar
  3. 3.
    J. Schwemer, Pathways of visual pigment regeneration in fly photoreceptors, Biophys. Struct. Mech. 9:287 (1983).CrossRefGoogle Scholar
  4. 4.
    R. Paulsen and J. Bentrop, Reversible phosphorylation of op sin induced by irradiation of blowfly retinae, J.Comp. Physiol. A 155:39 (1984).CrossRefGoogle Scholar
  5. 5.
    R. Paulsen and J. Bentrop, Light-modulated biochemical events in blowfly photoreceptors. Progr. Zool. 33:299 (1986).Google Scholar
  6. 6.
    J. Bentrop and R. Paulsen, Light-modulated ADP-ribosylation, prótein phosphorylation and protein binding in isolated fly photoreceptor membranes, Eur. J. Biochem., 161:61 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    J. E. O’Tousa, W. Baehr, R. L. Martin, J. Hirsch, W. L. Pak and M. L. Applebury, The Drosophila nina E gene encodes an opsin. Cell 40:839 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    C. S. Zuker, A. F. Cowman and G. H. Rubin, Isolation and structure of a rhodopsin gene from D. melanogaster, Cell 40:851 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    A. F. Cowman, C. S. Zuker and G. R. Rubin, An opsin gene expressed in only one cell type of the Drosophila eye. Cell 44:705 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    B. Minke, Photopigment dependent adaptation in invertebrates, in “The Molecular Mechanism of Phototransduction” H. Stieve, ed.. Springer Verlag, Berlin, Heidelberg, New York (1986).Google Scholar
  11. 11.
    J. Lisman, The role of metarhodopsin in the generation of spontaneous quantum bumps in ultraviolett receptors of Limulus median eye. J. Gen. Physiol. 85:171 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    Ü. Wilden, S. W. Hall and H. Kühn, Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein, Proc. Natl. Acad. Sci. USA 83:1174 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    J. L. Benovic, F. Mayor Jr, R. L. Somers, M. G. Caron and R. J. Lefkovitz, Light-dependent phosphorylation of rhodopsin by 3-adrenergic receptor kinase. Nature 321:869 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Calhoon, M. Tsuda and T. G. Ebrey, A light-activated GTPase from octopus photoreceptors, Biochem. Biophys. Res. Commun. 94:1452 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    C. A. Vandenberg and M. Montal, Light-regulated biochemical events in invertebrate photoreceptors. 1. Light-activated guanosine triphosphatase, guanine nucleotide binding and cholera toxin catalyzed labeling of squid photoreceptor membranes. Biochemistry 23:2339 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Blumenfeld, J. Erusalimsky, O. Heichal, Z. Selinger and B. Minke, Light-activated guanosinetriphosphatase in Musca eye membranes resembles the prolonged depolarizing after potential in photoreceptor cells, Proc. Natl. Acad. Sci. USA 82: 7116 (1986).CrossRefGoogle Scholar
  17. 17.
    H. R. Saibil, A light-stimulated increase of cyclic GMP in squid photoreceptors, FEBS Lett. 168:213 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    P. R. Robinson, E. C. Johnson and J. E. Lisman, A rapid light- induced rise in cGMP levels in squid retinas. Invest. Ophthalmol. Vis. Sci. (Suppl.) 27:218 (1986).Google Scholar
  19. 19.
    J. E. Brown, L. J. Rubin, A. J. Galayini, A. P. Tarver, R. F. Irvine, M. J. Berridge and R. E. Anderson, Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311:160 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    E. Szutz, M. Reid, R. Payne, D. W. Corson and A. Fein, Bioche mical and physiological evidence for the involvement of inositol 1,4,5-trisphosphate in visual transduction, Biophys. J. 47:202a (1985).Google Scholar
  21. 21.
    H. Kühn, Interactions between rhodopsin and light-activated enzymes in rods, “Progress in Retinal Research”, N. Osborne and J. Chader, eds., Pergamon Press, Oxford, New York (1984).Google Scholar
  22. 22.
    H. Matsumoto and W. L. Pak, Light-induced phosphorylation of retina-specific polypeptides of Drosophila in vivo. Science 223:184 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Joachim Bentrop
    • 1
  • Reinhard Paulsen
    • 1
  1. 1.Fakultät für Biologie, TierphysiologieRuhr-Universität BochumBochumGermany

Personalised recommendations