Signal Transduction by the Adenylate Cyclase System

  • Karl H. Jakobs
  • Peter Gierschik
  • Rüdiger Grandt
  • Rainer Marquetant
  • Ruth H. Strasser
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 135)


Regulation of cellular functions by extracellular hydrophilic signal molecules such as neurotransmitters, peptide hormones and locally acting hormonal factors requires efficient mechanisms for transmembrane signalling. By these mechanisms, the primary message, i.e., presence of a hormone or neurotransmitter at the outer surface of the plasma membrane, is translated into one or more second messages inside the cell. Formation of the intracellular messages may be induced by the neurotransmitter-occupied receptors themselves, e.g., the nicotinic acetylcholine and GABAA receptors, being channels for small cations and anions, respectively. In addition, some polypeptide hormone receptors, e.g., those of insulin and epidermal growth factor, are protein kinases themselves, causing autophosphorylation of the receptors and phosphorylation of other cellular substrates. This type of agonist-activated receptors is thought to regulate cellular functions, at least in part, by these phosphorylation reactions. The overwhelming majority, however, of plasma membrane-located receptors for hormones and neurotransmitters induces formation of intracellular messages by activating multi-component signal transduction systems, apparently located within the lipid bilayer of the plasma membrane. Out of the signalling systems studied so far, the hormone-sensitive adenylate cyclase system, which is responsible for the control of intracellular levels of cyclic AMP, is one of the best characterized examples of transmembrane signal transduction systems.


Adenylate Cyclase Cholera Toxin Guanine Nucleotide Pertussis Toxin Signal Transduction System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. K. Northup, P. C. Sternweis, M. D. Smigel, L. S. Schleifer, E. M. Ross, and A. G. Gilman, Purification of the regulatory component of adenylate cyclase, Proc. Natl. Acad. Sci. USA 77:6516 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    R. G. L. Shorr, R. J. Lefkowitz, and M. G. Caron, Purification of the 3-adrenergic receptor, J. Biol. Chem. 256:5820 (1981).PubMedGoogle Scholar
  3. 3.
    M. Hekman, D. Feder, A. K. Keenan, A. Gal, H. W. Klein, T. Pfeuffer, A. Levitzki, and E. J. M. Helmreich, Reconstitution of 3-adrenergic receptor with components of adenylate cyclase, EMBO J. 3:3339 (1984).PubMedGoogle Scholar
  4. 4.
    E. Pfeuffer, S. Mollner, and T. Pfeuffer, Adenylate cyclase from bovine brain cortex: purification and characterization of the catalytic unit, EMBO J. 4:3675 (1985).PubMedGoogle Scholar
  5. 5.
    D. C. May, E. M. Ross, A. G. Gilman, and M. D. Smigel, Reconstitution of catecholamine-stimulated adenylate cyclase activity using three purified proteins, J.Biol. Chem. 260:15829 (1985).PubMedGoogle Scholar
  6. 6.
    D. Feder, M.-J. Im, H. W. Klein, M. Hekman, A. Holzhöfer, C. Dees, A. Levitzki, E. J. M. Helmreich, and T. Pfeuffer, Reconstitution of ß-adrenoceptor-dependent adenylate cyclase from purified components, EMBO J. 5:1509 (1986).PubMedGoogle Scholar
  7. 7.
    K. H. Jakobs, G. Schultz, B. Gaugler, and T. Pfeuffer, Inhibition of Ng-protein-stimulated human platelet adenylate cyclase by epinephrine and stable GTP analogs, Eur. J. Biochem. 134:351 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Stryer, Molecular design of an amplification cascade in vision, Biopolymers 24:29 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    R. A. Kahn and A. G. Gilman, The protein cofactor necessary for ADP- ribosylation of Gg by cholera toxin is itself a GTP binding protein. J. Biol. Chem. 261:7906 (1986).PubMedGoogle Scholar
  10. 10.
    K. B. Seamon and J. W. Daly, Forskolin: A unique diterpene activator of cyclic AMP generating systems, J. Cyclic Nucleotide Res. 7:201 (1981).PubMedGoogle Scholar
  11. 11.
    M. D. Smigel, Purification of the catalyst adenylate cyclase, J. Biol. Chem. 261:1976 (1986).PubMedGoogle Scholar
  12. 12.
    B. M. Bokoch, T. Katada, J. K. Northup, M. Ui, and A. G. Gilman, Puri fication of the inhibitory guanine nucleotide regulatory component of adenylate cyclase, J. Biol. Chem. 259:3560 (1984).PubMedGoogle Scholar
  13. 13.
    J. Codina, J.D. Hildebrandt, R. Iyengar, L. Birnbaumer, R. D. Sekura, and C. R. Manclark, Pertussis toxin substrate, the putative N component of adenylyl cyclases, is an aß heterodimer regulated by guanine nucleotide and magnesium,Proc, Natl. Acad, Sci. USA 80:4276 (1983).CrossRefGoogle Scholar
  14. 14.
    D. R. Manning and A. G. Gilman, The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins, J. Biol. Chem. 258:7059 (1983).PubMedGoogle Scholar
  15. 15.
    P. Gierschik, J. Codina, C. Simons, L. Birnbaumer, and A. Spiegel, Antisera against a guanine nucleotide binding protein from retina cross react with the 3 subunit of the adenylyl cyclase-associated guanine nucleotide binding proteins, Ng and N, Proc. Natl. Acad. Sei. USA 82:727 (1985).CrossRefGoogle Scholar
  16. 16.
    J. D. Hildebrandt, J. Codina, W. Rosenthal, L. Birnbaumer, E. Neer, A. Yamazaki, and M. W. Bitensky, Characterization by two-dimensional peptide mapping of the y subunits of Ng and N, the regulatory proteins of adenylyl cyclase, and of transducin, the guanine nucleo- tide-binding protein of rod outer segments of the eye, J. Biol. Chem. 260:14867 (1985).PubMedGoogle Scholar
  17. 17.
    M. Ui, Islet-activating protein, pertussis toxin: A probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase, Trends Pharmacol. Sci. 5:277 (1984).Google Scholar
  18. 18.
    A. G. Gilman, Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase, J. Clin. Invest. 73:1 (1984).PubMedCrossRefGoogle Scholar
  19. T. Katada, M. Oinuma, and M. Ui, Mechanisms for inhibition of the catalytic activity of adenylate cyclase by the guanine nucleotide binding proteins serving as the substrate of islet-activating protein, pertussis toxin,J. Biol. Chem. 261:5215 (1986)PubMedGoogle Scholar
  20. 20.
    K. H. Jakobs, M. Minuth, S. Bauer, R. Grandt, C. Greiner, and P. Zubin, Dual regulation of adenylate cyclase. A signal transduction mechanism of membrane receptors, Basic Res. Cardiol. 81:1 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    K. H. Jakobs, K. Aktories, M. Minuth, and G. Schultz, Inhibition of adenylate cyclase. Adv. Cyclic Nucleotide Protein Phosphoryl. Res. 19:137 (1985).Google Scholar
  22. 22.
    K. H. Jakobs, M. Minuth, and K. Aktories, Sodium regulation of hormone- sensitive adenylate cyclase, J. Receptor Res. 4:443 (1984).Google Scholar
  23. 23.
    D. R. Sibley and R. J. Lefkowitz, Molecular mechanisms of receptor desensitization using the 3-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317:124 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    R. H. Strasser, D. R. Sibley, and R. J. Lefkowitz, A novel catechol- amine-activated adenosine cyclic 3*,5*-phosphate independent pathway for 3-adrenergic receptor phosphorylation in wild-type and mutant S49 lymphoma cells: Mechanisms of homologous desensitization of adenylate cyclase. Biochemistry 25:1371 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    J. L. Benovic, R. H. Strasser, M. G. Caron, and R. J. Lefkowitz, ß- Adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor, Proc. Natl. Acad. Sci. USA 83:2797 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    J. L. Benovic, F. Mayor Jr, R. L. Somers, M. G. Caron, and R. J. Lef kowitz, Light-dependent phosphorylation of rhodopsin by ß-adrenergic receptor kinase. Nature 321:869 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    D. J. Kelleher, J. E. Pessin, A. E. Ruoho, and G. L. Johnson, Phorbol ester induces desensitization of adenylate cyclase and phosphorylation of the ß-adrenergic receptor in turkey erythrocytes, Proc. Natl. Acad. Sci. USA 81:4316 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    K. H. Jakobs, S. Bauer, and Y. Watanabe, Modulation of adenylate cyclase of human platelets by phorbol esters. Impairment of the hor- mone-sensitive inhibitory pathway, J. Bioehem. 151:425 (1985).CrossRefGoogle Scholar
  29. 29.
    T. Katada, A. G. Gilman, Y. Watanabe, S. Bauer, and K. H. Jakobs, Protein kinase C phosphorylates the inhibitory guanine-nucleotide- binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase, Eur, J, Biochem. 151: 431 (1985).CrossRefGoogle Scholar
  30. 30.
    T. Nukada, T. Tanabe, H. Takahashi, M. Nöda, T. Hirose, S. Inayama, and S. Numa, Primary structure of the a-subunit of bovine adenylate cyclase-stimulating G-protein deduced from the cDNA sequence, FEES Lett. 195:220 (1986).CrossRefGoogle Scholar
  31. 31.
    T. Nukada, T. Tanabe, H. Takahashi, M. Nöda, K. Haga, T. Haga, A. Ichiyama, K. Kangawa, M. Hiranaga, H. Matsuo, and S. Numa, Primary structure of the a-subunit of bovine adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence, FEES Lett. 197:305 (1986).CrossRefGoogle Scholar
  32. 32.
    J. D. Robishaw, D. W. Russell, B. A. Harris, M. D. Smigel, and A. G. Gilman, Deduced primary structure of the a subunit of the GTP- binding stimulatory protein of adenylate cyclase, Proc. Natl. Acad. Sei. USA 83:1251 (1986).CrossRefGoogle Scholar
  33. 33.
    R. A. F. Dixon, B. K. Kobilka, D. J. Strader, J. L. Benovic, H. G. Dohlman, T. Frielle, M. A. Bolanowski, C. D. Bennett, E. Rands, R. E. Diehl, R. A. Mumford, E. E. Slater, E. S. Sigal, M. G. Caron, R. J. Lefkowitz, and C. D. Strader, Cloning of the gene and cDNA for mammalian 3-adrenergic receptor and homology with rhodopsin, Nature 321:75 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Karl H. Jakobs
    • 1
  • Peter Gierschik
    • 1
  • Rüdiger Grandt
    • 1
  • Rainer Marquetant
    • 1
  • Ruth H. Strasser
    • 2
  1. 1.Pharmakologisches InstitutHeidelbergFederal Republic of Germany
  2. 2.Medizinische Klinik der Universität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations