Protein Sequencing and Covalent Processing

  • Kenneth A. Walsh
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 135)


To understand the control of cellular processes at the molecular level, it is important to ascertain the molecular anatomy of constituent receptors, transducers, messengers and enzymes. Although an ultimate goal of such studies is to visualize the three-dimensional interactions of these complex proteins with their regulators and their targets, this level of understanding is only available among a small number of proteins that have been crystallized and analyzed by X-ray diffraction techniques. Amino acid sequence information is available in a much larger number of cases, as determined either by protein chemistry or by analysis of the corresponding DNA. At this level these findings may provide knowledge of the specific location of binding sites within the linear sequences, information concerning modes of regulation (e.g. by phosphorylation or by limited proteolysis), understanding of the domain or subunit sub- structural arrangements, and an inkling of the evolutionary history in their background.


Prosthetic Group Limited Proteolysis Edman Degradation Zymogen Activation Amino Acid Sequence Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bidüngmeyer, B.A., Cohen, S.A. & Tarvin, T.L., (1984) J. Chromatogr. Biomed. Appl. 336, 93CrossRefGoogle Scholar
  2. Blobel, G. (1980) Proc. Natl. Acad. Sci. USA 77, 1496PubMedCrossRefGoogle Scholar
  3. Carr, S.A., & Biemann, K. (1984) Methods Enzymol. 106, 29PubMedCrossRefGoogle Scholar
  4. Gibson, B.W. & Biemann, K. (1984) Proc. Natl. Acad. Sci. USA 81, 1956PubMedCrossRefGoogle Scholar
  5. Glajeh, J.L., Gluckman, J.C., Charikofsky, J.G., Minor, J.M. & Kirk- land, J.J. (1985) J. Chromatogr. 318, 23CrossRefGoogle Scholar
  6. Hermodson, M.A., Ericsson, L.H., Titani, K., Neurath, H. & Walsh, K.A. (1972) Biochemistry 11, 4493PubMedCrossRefGoogle Scholar
  7. Hunkapiller, M., Kent, S., Caruthers, M., Dreyer, W., Firca, J., Giffin, C., Horvath, S., Hunkapiller, T., Tempst, P. & Hood, L. (1984) Nature 310, 105PubMedCrossRefGoogle Scholar
  8. Hunkapiller, M.W. & Hood, L.E. (1983) Science 219, 650PubMedCrossRefGoogle Scholar
  9. Kuret, J., Woodgett, J.R. & Cohen, P. (1985) Europ. J. Biochem. 151, 39PubMedCrossRefGoogle Scholar
  10. Masaki, T., Tanabe, M., Nakamura, K., Soejima, M. (1981) Biochem. Biophys. Acta. 660, 44PubMedGoogle Scholar
  11. Neurath, H. & Walsh, K.A. (1976) Proc. Natl. Acad. Sci. USA 73, 3825PubMedCrossRefGoogle Scholar
  12. Proud, E.G., Rylatt, D.B., Yeaman, S.J., & Cohen, P. (1977) FEBS Lett. 80, 435PubMedCrossRefGoogle Scholar
  13. Sakata, J., Mizuno, K. & Matsuo, H. (1986) Biochem. Biophys. Res. Commmun. 140, 230PubMedCrossRefGoogle Scholar
  14. Tarr, G.E., Beecher, J.F., Bell, M. & McKean, D.J. (1978) Anal. Biochem. 84, 622PubMedCrossRefGoogle Scholar
  15. Titani, K., Kumar, S., Takio, K., Ericsson, L.H., Wade, R.D., Ashida, K., Walsh, K.A., Chopek, M.W., Sadler, J.E. & Fujikawa, K. (1986) Biochemestry 25, 3171CrossRefGoogle Scholar
  16. Walsh, K.A., Ericsson, L.H., Parmelee, D.C. & Titani, K. (1981) Annu. Rev. Biochem. 50, 261PubMedCrossRefGoogle Scholar
  17. Wold, F. (1981) Annu. Rev. Biochem. 50, 783PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Kenneth A. Walsh
    • 1
  1. 1.Department of Biochemistry, SJ-70University of WashingtonSeattleUSA

Personalised recommendations