Advertisement

Regulation of Amino Acids Biosynthesis in Prokaryotes

  • Georges N. Cohen
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 135)

Abstract

One day in 1959, Francois Jacob came down from the third floor to the first floor of the Institute where I was working and told me that it would be extremely useful if we could find constitutive mutants for amino acid biosynthesis, because of the possibility of extending the model of negative regulation established with the lac system to biosynthetic systems.

Keywords

Amino Acid Biosynthesis General Genetic Methionine Biosynthesis Biophysical Research Communication Constitutive Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, A., 1973, Mechanism of repression of methionine biosynthesis in Escherichia coli. I. The role of methionine, S-adenosylmethionine and methionyl transfer ribonucleic acid in repression. Molecular and General Genetics, 123:299.PubMedCrossRefGoogle Scholar
  2. Bachmann, B.J. & Low, K.B., 1980, Linkage map of Escherichia coli K12, Edition 6, Microbiological Reviews, 44:1.PubMedGoogle Scholar
  3. Belfaiza, J., Fazel, A., Müller, K. & Cohen, G.N., 1984, E.coli aspartokinase Il-homoserine dehydrogenase II polypeptide chain has a triglobular structure. Biochemical Biophysical Research Communications, 123: 16.CrossRefGoogle Scholar
  4. Belfaiza, J., Parsot, C., Martel, A., Bouthier de la Tour, C., Margarita, D., Cohen, G.N. & Saint-Girons, I., 1986, Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proceedings of the National Academy of Sciences USA, 83: 867.CrossRefGoogle Scholar
  5. Blatt, J.M. & Umbarger, H.E., 1972, On the role of isoleucyl-t-RNA synthetase in multivalent repression. Biochemical Genetics, 6:99.PubMedCrossRefGoogle Scholar
  6. Bogosian, G. & Somerville, R.L., 1983, Trp repressor protein is capable of introducing into other amino acid biosynthetic systems. Molecular and General Genetics, 191:51–58.PubMedCrossRefGoogle Scholar
  7. Cassan, M., Parsot, C., Cohen, G.N. & Patte, J.C., 1986, Nucleotide sequence of the lysC gene encoding the lysine sensitive aspartokinase III of E.coli K12: evolutionary pathway leading to three isofunctional enzymes. Journal of Biological Chemistry, 261:1052.PubMedGoogle Scholar
  8. Chu, J., Shoeman, R., Hart, J., Coleman, T., Mazaitis, A., Kelker, N., Brot, N. & Weissbach, H., 1985, Cloning and expression of the metE gene in Escherichia coli. Archives of Biochemistry and Biophysics, 239:467.PubMedCrossRefGoogle Scholar
  9. Cohen, G.N., 1983, The common pathway to lysine, methionine and threonine, p. 147–171. In Amino acids: Biosynthesis and Genetic Regulation, eds K.M. Herrmann & R.L. Somerville, London: Addison-Wesley Publishing.Google Scholar
  10. Cohen, G.N. & Jacob, F., 1959, Sur la répression de la synthèse des enzymes intervenant dans la formation du tryptophane chez Escherichia coli, Comptes Rendus de 1’Académie des Sciences, Paris, 248:3490.Google Scholar
  11. Cohen, G.N. & Patte, J.C., 1963, Some aspects of the regulation of amino acid biosynthesis in a branched pathway. Cold Spring Harbor S3rmposia in Quantitative Biology, 28:13.Google Scholar
  12. Cohen, G.N., Patte, J.C. & Truffa-Bachi, P., 1965, Parallel modifications caused by mutations in two enzymes concerned with the biosynthesis of threonine in Escherichia coli. Biochemical and Biophysical Research Communications, 19:546.PubMedCrossRefGoogle Scholar
  13. Cohen, G.N., Stanier, R.Y. & Le Bras, G., 1969, Regulation of the biosynthesis of the amino acids of the aspartate family in coliform bacteria and pseudomonads, Journal of Bacteriology, 99:791.PubMedGoogle Scholar
  14. Cohn, M., Cohen, G.N. & Monod, J., 1953, L’effet inhibiteur spécifique de la méthionine dans la formation de la méthionine synthase chez E.coli, Comptes Rendus de 1’Académie des Sciences, Paris, 236:746.Google Scholar
  15. Comer, M.M., 1982, Threonine tRNAs and their genes in Escherichia coli. Molecular and General Genetics, 187:132.PubMedCrossRefGoogle Scholar
  16. Cossart, P., Katinka, M., Yaniv, M., Saint-Girons, I. & Cohen, G.N., 1979, Construction and expression of a hybrid plasmid containing the Escherichia coli thrA and thrB genes. Molecular and General Genetics, 175:39.PubMedCrossRefGoogle Scholar
  17. Duchange, N., Zakin, M.M., Ferrara, P., Saint-Girons, I., Park, I., Tran, S.V., Py, M.C. & Cohen, G.N., 1983, Structure of the metJBLF cluster in E.coli K12. Sequence of the metB structural gene and of the 5’ and 3’ flanking regions of the metBL operon, Journal of Biological Chemistry, 258:14868.PubMedGoogle Scholar
  18. Fazel, A., Müller, K., Le Bras, G., Garel, J.R., Véron, M. & Cohen, G.N., 1983, A triglobular model for the polypeptide chain of aspartokinase I- homoserine dehydrogenase I of Escherichia coli K12, Biochemistry, 22:158.PubMedCrossRefGoogle Scholar
  19. Flavin, M., 1975, Methionine biosynthesis, p. 407–503. In Metabolic Pathways, 3rd ed., vol. 7, Metabolism of Sulfur Compounds, ed. D.M. Greenberg, New York: Academic Press.Google Scholar
  20. Freundlich, M., 1963, Multivalent repression in the biosynthesis of threonine in Salmonella typhimurium and Escherichia coli. Biochemical and Biophysical Research Communications, 10:277.PubMedCrossRefGoogle Scholar
  21. Gardner, J.F., 1979, Regulation of the threonine operon: tandem threonine and isoleucine codons in the control region and translation control of transcription termination. Proceedings of the National Academy of Sciences, USA, 76:1706.CrossRefGoogle Scholar
  22. Gardner, J.F., 1982, Initiation, pausing and termination of transcription in the threonine operon regulatory region of Escherichia coli. Journal of Biological Chemistry, 257:3896.PubMedGoogle Scholar
  23. Gardner, J.F. & Reznikoff, W.S., 1978, Identification and restriction endonuclease mapping of the threonine operon regulatory region. Journal of Molecular Biology, 126:241.PubMedCrossRefGoogle Scholar
  24. Gardner, J.F. & Smith, O.H., 1975, Operator-promoter functions in the threonine operon of Escherichia coli, Journal of Bacteriology, 124:161.PubMedGoogle Scholar
  25. Gardner, J.F., Smith, O.H., Fredricks, W.W. & McKinney, M.A., 1974, Secondary-site attachment of coliphage lambda near the thr operon. Journal of Molecular Biology, 90:613.PubMedCrossRefGoogle Scholar
  26. Gilson, E., Clément, J.M., Brutlag, D. & Hofnung, M., 1984, A family of dispersed repetitive extragenic palindromic DNA sequences in E.coli, EMBO Journal, 3:1417.PubMedGoogle Scholar
  27. Greene, R.C. & Smith, A.A., 1984, Insertion mutagenesis of the metJBLF gene cluster of Escherichia coli: Evidence for an metBL operon. Journal of Bacteriology, 159:767.PubMedGoogle Scholar
  28. Greene, R.C., Su, C.H. & Holloway, C.J., 1970, S-adenosylmethionine synthetase deficient mutants of Escherichia coli K12 with impaired control of methionine synthesis, Biochemical and Biophysical Research Communications, 38:1120.PubMedCrossRefGoogle Scholar
  29. Greene, R.C., Williams, R.D., Kung, H.F., Spears, C. & Weissbach, H., 1973, Effect of methionine and vitamin B12 on the activities of methionine biosynthetic enzymes in met J mutants of Escherichia coli K12, Archives of Biochemistry and Biophysics, 158:249.PubMedCrossRefGoogle Scholar
  30. Gross, T.S. & Rowbury, R.J., 1969, Methionyl-transfer RNA synthetase mutants of Salmonella typhimurium which have normal control of the methionine biosynthetic enzymes, Biochimica et Biophysica Acta, 184:233.PubMedCrossRefGoogle Scholar
  31. Holloway, C.T., Greene, R.C. & Su, C.H., 1970, Regulation of S- adenosylmethionine synthetase in Escherichia coli. Journal of Bacteriology, 104:734.PubMedGoogle Scholar
  32. Johnson, D.I. & Somerville, R.L., 1983, Evidence that repression mechanisms can exert control over the thr, leu, and ilv operons of Escherichia coli K12, Journal of Bacteriology, 155:49.PubMedGoogle Scholar
  33. Johnson, D.L. & Somerville, R.L., 1984, New regulatory genes involved in the control of transcription initiation at the thr and ilv promoters of Escherichia coli K12, Molecular and General Genetics, 195:70.PubMedCrossRefGoogle Scholar
  34. Johnson, E.J., Cohen, G.N. & Saint-Girons, I., 1977, Threonyl-transfer ribonucleic acid synthetase and the regulation of the threonine operon in Escherichia coli. Journal of Bacteriology, 129:66.PubMedGoogle Scholar
  35. Katinka, M., Cossart, P., Sibilli, L., Saint-Girons, I., Chalvignac, M.A., Le Bras, G., Cohen, G.N. & Yaniv, M., 1980, Nucleotide sequence of the thrA gene of Escherichia coli. Proceedings of the National Academy of Sciences, USA, 77:5730.CrossRefGoogle Scholar
  36. Kirby, T., Hindenach, B. & Greene, R., 1985, Location of promoters and the 5’ ends of transcripts of the metB and met J genes of E.coli K12, Federation Proceedings, 44:1416.Google Scholar
  37. Lawrence, D.A., Smith, D.A. & Rowbury, R.J., 1968, Regulation of methionine biosynthesis in Salmonella typhimurium: mutants resistant to inhibition by analogues of methionine. Genetics, 58:473.PubMedGoogle Scholar
  38. Liljestrand-Golden, C.A. & Johnson, J.R., 1984, Physical organization of the metJB component of the Escherichia coli Kl2 metJBLF gene cluster. Journal of Bacteriology, 157:413.PubMedGoogle Scholar
  39. Markham, G.D., De Parisis, J. & Gatmaitan, J., 1984, The sequence of metK, the structural gene for S-adenosylmethionine in Escherichia coli, Journal of Biological Chemistry, 259:14505.PubMedGoogle Scholar
  40. Michaeli, S., Mevarech, M. & Ron, E.Z., 1984, Regulatory region of the metA gene of Escherichia coli K12, Journal of Bacteriology, 160:1158.PubMedGoogle Scholar
  41. Milner, L., Whitfield, C. & Weissbach, H., 1969, Effects of L-methionine and vitamin B12 on methionine biosynthesis in Escherichia coli, Archives of Biochemistry and Biophysics, 133:413.PubMedCrossRefGoogle Scholar
  42. Nass, G. & Thomale, J., 1974, Alteration of structure or level of threonyl- t-RNA synthetase in borrelidin resistant mutants of Escherichia coli, FEBS Letters, 39:182.PubMedCrossRefGoogle Scholar
  43. Parsot, C., Cossart, P., Saint-Girons, I. & Cohen, G.N., 1983, Nucleotide sequence of thrC and of the transcription termination region of the threonine operon in Escherichia coli Kl2, Nucleic Acids Research, 11: 7331.PubMedCrossRefGoogle Scholar
  44. Parsot, C., Saint-Girons, I. & Cossart, P., 1982, DNA sequence change of a deletion mutation abolishing attenuation control of the threonine operon of E.coli K12, Molecular and General Genetics, 188:455.PubMedCrossRefGoogle Scholar
  45. Patte, J.C., Le Bras, G. & Cohen, G.N., 1967, Regulation by methionine of the synthesis of a third aspartokinase and a second homoserine dehydrogenase in Escherichia coli K12, Biochimica et Biophysica Acta, 136:245.PubMedCrossRefGoogle Scholar
  46. Press, R., Glansdorff, N., Miner, M., de Vries, J., Kadner, R. & Maas, W.K., 1971, Isolation of transducing particles of (1)80 bacteriophage that carry different regions of the Escherichia coli genome. Proceedings of the National Academy of Sciences, USA, 68:795.CrossRefGoogle Scholar
  47. Rosenberg, M. & Court, D., 1979, Regulatory sequences involved in the promotion and termination of RNA transcription. Annual Reviews of Genetics, 13:319.CrossRefGoogle Scholar
  48. Rowbury, R.J., 1983, Methionine biosynthesis and its regulation, p. 191-211. In Amino Acids: Biosynthesis and Genetic Regulation, eds K.M. Herrmann & R.L. Somerville, Mass., USA: Addison-Wesley.Google Scholar
  49. Rowbury, R.J. & Woods, D.D., 1961, Further studies in the repression of methionine synthesis in Escherichia coli. Journal of General Microbiology, 24:129.PubMedCrossRefGoogle Scholar
  50. Rowbury, R.J. & Woods, D.D., 1964, Repression by methionine of cystathionine formation in Escherichia coli. Journal of General Microbiology, 35:145.PubMedCrossRefGoogle Scholar
  51. Rowbury, R.J. Woods, D.D., 1966, The regulation of cystathionine formation in Escherichia coli. Journal of General Microbiology, 42:155.PubMedCrossRefGoogle Scholar
  52. Saint-Girons, I., 1978, A new class of regulatory mutations affecting the expression of the threonine operon in Escherichia coli K12, Molecular and General Genetics, 162:95.PubMedCrossRefGoogle Scholar
  53. Saint-Girons, I., Belfaiza, J., Guillou, Y., Perrin, D., Guiso, N., Barzu, O. & Cohen, G.N., 1986, Interactions of the Escherichia coli methionine repressor with the metF operator and with its corepressor, S- adenosylmethionine. Journal of Biological Chemistry, 261:10936.PubMedGoogle Scholar
  54. Saint-Girons, I., Duchange, N., Cohen, G.N. & Zakin, M.M., 1984, Structure and autoregulation of the metJ regulatory gene in E.coli, Journal of Biological Chemistry, 259:14282.PubMedGoogle Scholar
  55. Saint-Girons, I., Duchange, N., Zakin, M.M., Park, I., Margarita, D., Ferrara, P. & Cohen, G.N., 1983, Nucleotide sequence of metF, the E.coli structural gene for 5–10 methylene tetrahydrofolate reductase and of its control region. Nucleic Acids Research, 11:6723.PubMedCrossRefGoogle Scholar
  56. Saint-Girons, I. & Margarita, D., 1975, Operator-constitutive mutants in the threonine operon of Escherichia coli Kl2, Journal of Bacteriology, 124:1137.PubMedGoogle Scholar
  57. Saint-Girons, I. & Margarita, D., 1978, Fine structure analysis of the threonine operon in Escherichia coli K12, Molecular and General Genetics, 162:101.PubMedCrossRefGoogle Scholar
  58. Saint-Girons, I. & Margarita, D., 1985, Evidence for an internal promoter in the Escherichia coli threonine operon. Journal of Bacteriology, 161:461.PubMedGoogle Scholar
  59. Schulte, L.L., Stauffer, T.L. & Stauffer, G.V., 1984, Cloning and characterization of the Salmonella typhimurium metE gene. Journal of Bacteriology, 158:928.PubMedGoogle Scholar
  60. Shoeman, R., Redfield, B., Coleman, I., Greene, R.C., Brot, N. & Weissbach, H., 1985, Regulation of methionine synthesis in E.coli: effect of the met J gene product and S-adenosylmethionine on the expression of the metF gene. Proceedings of the National Academy of Sciences, USA, 82:3601.CrossRefGoogle Scholar
  61. Smith, D.A., 1961, S-amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium. Advances in Genetics, 16: 141.CrossRefGoogle Scholar
  62. Smith, A. & Greene, R.C., 1984, Cloning of the methionine regulatory gene, met J, of E.coli K12 and identification of its product. Journal of Biological Chemistry, 259:14279.PubMedGoogle Scholar
  63. Smith, A., Greene, R.C., Kirby, T.W. & Hindenach, B.R., 1985, Isolation and characterization of the product of the methionine regulatory gene, metJ, of E.coli K12, Proceedings of the National Academy of Sciences, USA, 82: 6104.Google Scholar
  64. Su, C.H. & Greene, R.C., 1971, Regulation of methionine biosynthesis in Escherichia coli, mapping of the met J locus and properties of a metJ +- metJ - diploid, Proceedings of the National Academy of Sciences, USA, 68: 367.CrossRefGoogle Scholar
  65. Szentirmai, A., Szentirmai, M. & Umbarger, H.E., 1968). Isoleucine and valine metabolism of Escherichia coli. Biochemical properties of mutants resistant to thiaisoleucine. Journal of Bacteriology, 95, 1672–1679.PubMedGoogle Scholar
  66. Thèze, J., Margarita, D., Cohen, G.N., Borne, F. & Patte, J.C. (1974). Mapping of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases of Escherichia coli K12. Journal of Bacteriology, 117, 133–144.PubMedGoogle Scholar
  67. Thèze, J. & Saint-Girons, I. (1974). Threonine locus of Escherichia coli K12: genetic structure and evidence for an operon. Journal of Bacteriology, 118, 990–998.PubMedGoogle Scholar
  68. Tran, V.S., Schaeffer, E., Bertrand, O., Mariuzza, R. & Ferrara, P. (1983). Purification, molecular weight and N-terminal sequence of cystathionine- y -synthase of Escherichia coli. Journal of Biological Chemistry (Appendix), 258, 14872–14873.Google Scholar
  69. Urbanowski, M.L. & Stauffer, G.V. (1985a). Cloning and initial characterization of the metB and metJ genes from Salmonella typhimurium LT2. Gene, 35, 187–197.PubMedCrossRefGoogle Scholar
  70. Urbanowski, M.L. & Stauffer, G.V. (1985b). Nucleotide sequence and biochemical characterization of the met J gene from Salmonella typhimurium LT2. Nucleic Acids Research, 13, 673–685.CrossRefGoogle Scholar
  71. Véron, M. & Cohen, G.N. (1974). Intra- and interprotomeric interactions between the catalytic regions of aspartokinase I-homoserine dehydrogenase I from Escherichia coli K12. In Metabolic Interconversion of Enzymes, eds E.H. Fisher, E.G. Krebs, H. Neurath, and E.R. Stadtman, p. 335–347. Berlin: Springer Verlag.Google Scholar
  72. Wijesundera, S. & Woods, D.D, (I960), Suppression of methionine synthesis in Escherichia coli by growth in the presence of this amino acid. Journal of General Microbiology, 22, 229–241.Google Scholar
  73. Yanofsky, C. (1981). Attenuation in the control of expression of bacterial operons. Nature, 289, 751–758.PubMedCrossRefGoogle Scholar
  74. Yanofsky, C. & Lennox, E.S. (1959). Transduction and recombination study of linkage relationships among the genes controlling tryptophan synthesis in E.coli. Virology, 8, 425–447.PubMedCrossRefGoogle Scholar
  75. Zakin, M.M., Duchange, N., Ferrara, P. & Cohen, G.N. (1983). Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase Il-homoserine dehydrogenase II and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I derive from a common ancestor. Journal of Biological Chemistry, 258, 3028–3031.PubMedGoogle Scholar
  76. Zakin, M.M., Garel, J.R., Dautry-Varsat, A., Cohen, G.N. & Boulot, G. (1978). Detection of the homology among proteins by immunochemical cross- reactivity between denatured antigens: application to the threonine and methionine regulated aspartokinases-homoserine dehydrogenases from E.coli K12. Biochemistry, 17, 4318–4323.PubMedCrossRefGoogle Scholar
  77. Zakin, M.M., Greene, R.C., Dautry-Varsat, A., Duchange, N., Ferrara, P., Py, M.C., Margarita, D. & Cohen, G.N. (1982). Construction and physical mapping of plasmids containing the metJBLF gene cluster of E. coli K12. Molecular and General Genetics, 187, 101–106.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Georges N. Cohen
    • 1
  1. 1.Unité de Biochimie Cellulaire Département de Biochimie et Génétique MoléculaireInstitut PasteurParis Cedex 15France

Personalised recommendations