Signal Cascades in Regulation of Glycogenolysis

  • Ludwig M. G. HeilmeyerJr.
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 135)


Glycogen Phosphorylase was the first enzyme recognized some thirty years ago to be regulated by phosphorylation/dephosphorylation. Over the years many fundamental observations allowed to formulate cascades by which extracellular signals could be coupled to the physiological response — glycogenolysis (1). Before trying to analyze this “glycogenolytic cascade” on the basis of accumulated physiological and biochemical data it seems worthwhile to summarize some general principles inherent in intracellular signal pathways. Extracellular agonists like hormones or neurotransmitters are pleiotropic, however, they provoke a cell specific physiological response. As an initiating event agonists combine with specific receptors on the cell surface. Plasma membrane-localized signaling systems, transmit and amplify the signal; they release intracellularly a second messenger. All known second messengers again are pleiotropic and potentially can influence simultaneously more than one process. An advantage of this pleiotropism is the possibility to coordinate cellular processes e.g. cell motility with energy metabolism or, for example, to prevent futile cycling by shutting down glycogen synthesis when glycogenolysis is activated. In analogy to the extracellular event second messengers interact with specific receptors; their saturation constitutes the corresponding intracellular signal.


Glycogen Phosphorylase cAMP Dependent Protein Kinase Dependent Protein Kinase Nucleotide Binding Domain Frog Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Fischer, E.H., this volume. Plenum Publ. Corp., pp. (1987).Google Scholar
  2. (2).
    Goldbeter, A. and Koshland, D.E., Jr., Proc. Natl. Acad. Sci. USA, 78, 6840–6844 (1981).PubMedCrossRefGoogle Scholar
  3. (3).
    Pickett-Gies, C.A. and Walsh, D.A., The Enzymes, Vol XVII, 395–459 (1986).CrossRefGoogle Scholar
  4. (4).
    Malencik, D.A. and Fischer, E.H., Calcium and Cell Function (Cheung, W.Y., ed.). Vol. III, 161–188 (1982).Google Scholar
  5. (5).
    Cohen, P., Eur J. Biochem. 34, 1–14 (1973).PubMedCrossRefGoogle Scholar
  6. (6).
    Hayakawa, T., Perkins, J.P. and Krebs, E.G., Biochemistry 12, 574–580 (1973).PubMedCrossRefGoogle Scholar
  7. (7).
    Kilimann, M.W. and Heilmeyer, L.M.G., Jr., Biochemistry 21, 1727–1734 (1982).PubMedCrossRefGoogle Scholar
  8. (8).
    Cohen, P., Current Top. Cell. Regul. 14, 117–196 (1978).Google Scholar
  9. (9).
    Schramm, H.J., and Jennissen, H.P., J. Mol. Biol. 181, 503–516 (1985).PubMedCrossRefGoogle Scholar
  10. (10).
    Kilimann, M.W., Schnackerz, K.D. and Heilmeyer, L.M.G., Jr., Biochemistry 23, 112–117 (1984).PubMedCrossRefGoogle Scholar
  11. (11).
    Crabb, J.W. and Heilmeyer, L.M.G., Jr. J. Biol. Chem. 259. 6346–6350 (1984).Google Scholar
  12. (12).
    Cheng, A., Fitzgerald, T.J. and Carlson, G.M., J. Biol. Chem. 260, 2535–2542 (1985).PubMedGoogle Scholar
  13. (13).
    Kilimann, M.W. and Heilmeyer, L.M.G., Jr., Eur. J. Biochem. 73. 191–197 (1977).PubMedCrossRefGoogle Scholar
  14. (14).
    Kilimann, M.W. and Heilmeyer, L.M.G., Jr., Biochemistry 21. 1735–1739 (1982).PubMedCrossRefGoogle Scholar
  15. (15).
    Hessova, Z., Varsanyi, M. and Heilmeyer, L.M.G., Jr., Eur. J. Biochem. 146, 107–115 (1985).PubMedCrossRefGoogle Scholar
  16. (16).
    Sotiroudis, T.G. and Nikolaropoulos, S., FEBS Lett. 176. 421–425 (1984).CrossRefGoogle Scholar
  17. Sotiroudis, T.G., Crabb, J.W. and Heilmeyer, L.M.G., Jr., unpublished.Google Scholar
  18. Meyer, H. E. and Heilmeyer, L.M.G., Jr., unpublished.Google Scholar
  19. (19).
    Cohen, P., Watson, D.C. and Dixon, G.H., Eur. J. Biochem. 51, 79–92 (1975).PubMedCrossRefGoogle Scholar
  20. (20).
    Heilmeyer, L.M.G., Jr., Jahnke, U., Kilimann, M.W., Kohse, K.P. and Sperling, J.E., Cold Spring Harbor Conferences on Cell Proliferation. Vol. 8, 321–329 (1981).Google Scholar
  21. (21).
    Gulyaeva, N.B., Vulfson, P.L. and Severin, E.S., Biokhimiya 43. 373–381 (1977).Google Scholar
  22. (22).
    Fischer, E.H., Alaba, J.O., Brautigan, D.L., Kerrick, W.G.D., Malencik, D.A., Moeschler, H.J., Picton, C. and Pocinwong, S., in: Versatility of Proteins. (C.H. Li, ed.), Academic Press, New York, 133–145 (1978).Google Scholar
  23. (23).
    Skuster J.R., Chan, C.K.F and Graves, D.J., J. Biol. Chem. 255. 2203–2210 (1980).PubMedGoogle Scholar
  24. (24).
    Chan, K.F.J, and Graves, D.J., J. Biol Chem. 257, 5948–5955 (1981).Google Scholar
  25. (25).
    Reimann, E.M., Titani, K., Ericsson, L.H., Wade, R.D., Fischer, E.H. and Walsh, K.A., Biochemistry 23, 4185–4192 (1984).PubMedCrossRefGoogle Scholar
  26. (26).
    Grand, R.J.A., Shenolikar, S. and Cohen, P., Eur. J. Biochem. 113 359–367 (1981).PubMedCrossRefGoogle Scholar
  27. (27).
    Sudhakar Babu, Y., Sack, J.S., Greenhough, T.J., Bugg, C.E., Means, A.R. and Cook, W.J., Naure 315 37–40 (1985).Google Scholar
  28. (28).
    Kohse, K.P. and Heilmeyer, L.M.G., Jr., Eur. J Biochem. 117, 507–513 (1981).PubMedCrossRefGoogle Scholar
  29. (29).
    King, M.M. and Carlson, G.M., Arch. Biochem. Biophys. 209, 517–523 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Ludwig M. G. HeilmeyerJr.
    • 1
  1. 1.Institut für Physiologische Chemie Abt. für Biochemie Supramolekularer SystemeRuhr-Universität BochumBochumWest-Germany

Personalised recommendations