Regulation of the Ca-Channel by Phosphorylation-Dephosphorylation

  • J. Hescheler
  • M. Kameyama
  • W. Trautwein
  • G. Mieskes
  • F. Hofmann
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 135)


Similar as other second messengers, Ca++ ions can trigger many intracellular enzymatic reactions (e.g. activation of the contractile filaments, 3, 4). One of the strategic points for regulation of the intracellular Ca concentration are Ca channels, transmembrane proteins, which have -under physiological conditions- a high selectivity for conducting Ca ions. Beside their voltage dependency, it was found that the Ca channels are also substrates for different enzymatic reactions (13, 14). Here we report that cAMP-dependent protein kinase (cAMP-PK) can increase the Ca current (ICa) amplitude by phosphorylation of a channel related protein. The phosphorylation is antagonized by several phosphatases.


Catalytic Subunit Pipette Solution Protein Kinase Inhibitor Microscopic Picture Strategic Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashby CD., Walsh DA. (1972) J. Biol. Chem. 247:6637PubMedGoogle Scholar
  2. 2.
    Chad J., Eckert R. (1986) J. Physiol. 378:31PubMedGoogle Scholar
  3. 3.
    Cohen P. (1982) Nature 296:613PubMedCrossRefGoogle Scholar
  4. 4.
    Fabiato A., Fabiato F. (1979) Ann. Rev. Physiol. 41:473CrossRefGoogle Scholar
  5. 5.
    5- Flockerzi V., Oeken HJ., Hofmann F., Pelzer D., Cavalie A.,Trautwein W. (1986) Nature 323:66PubMedCrossRefGoogle Scholar
  6. 6.
    Hescheler J., Kameyama M., Trautwein W. (1986) Pflügers Arch 407:182PubMedCrossRefGoogle Scholar
  7. 7.
    Ingebritzen TS., Cohen P (1983) Science 221:331CrossRefGoogle Scholar
  8. 8.
    Ingebritzen TS., Cohen P (1983) Eur. J. Biochem. 132:255CrossRefGoogle Scholar
  9. 9.
    Isenberg G., Klöckner U. (1982) Pflügers Arch 395:6PubMedCrossRefGoogle Scholar
  10. 10.
    Kameyama M., Hofmann F., Trautwein W. (1985) Pflügers Arch. 405:285PubMedCrossRefGoogle Scholar
  11. 11.
    Kameyama M., Hescheler J., Mieskes G., Trautwein W. (1986) Pflügers Arch 407:461PubMedCrossRefGoogle Scholar
  12. 12.
    Kameyama M., Hescheler J., Hofmann F., Trautwein W. (1986) Pflügers Arch 407:123PubMedCrossRefGoogle Scholar
  13. 13.
    Osterrieder W., Brum G., Hescheler J., Trautwein W., Flockerzi V., Hofmann F. (1982) Nature, 293:576CrossRefGoogle Scholar
  14. 14.
    Reuter H. (1983) Nature 301:569PubMedCrossRefGoogle Scholar
  15. 15.
    Sakmann B., Neher E. (eds) Plenum Press (New York, 1983)Google Scholar
  16. 16.
    De Wit R., Hoppe J., Stec W., Baraniak J., Jastorff B. (1982) Eur. J. Biochem. 122:95PubMedCrossRefGoogle Scholar
  17. 17.
    the thiophosphate group donated by this nucleotide is resistant to dephosphorylationGoogle Scholar
  18. 18.
    PR-CAMP(S) suppresses the dissoziation of the regulatory and catalytic subunit of the cAMP dependent protein kinase and thereby inactivates the enzyme.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. Hescheler
    • 1
  • M. Kameyama
    • 1
  • W. Trautwein
    • 1
  • G. Mieskes
    • 3
  • F. Hofmann
    • 2
  1. 1.II. Physiologisches InstitutGermany
  2. 2.Physiologische Chemie, SFB 246Universität des SaarlandesHomburg/SaarGermany
  3. 3.Klinische Biochemie, SFB 238Universität GottingenGottingenGermany

Personalised recommendations