Advertisement

Signal Transduction through cAMP and cGMP

  • Jackie D. Corbin
  • Stephen J. Beebe
  • Charles E. Cobb
  • Sharron H. Francis
  • Jack N. Wells
  • Stanley L. Keeley
  • Thomas W. Gettys
  • Peter F. Blackmore
  • Lynn Wolfe
  • Leslie R. Landiss
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 135)

Abstract

Cells respond to hormones, neurotransmitters and other agents in two opposing ways. These are referred to as amplification (enhancement) and adaptation (diminution) (1). Amplification enables an organism or cell to respond to a very faint signal such as a low blood hormone concentration. Adaptation prevents constant background stimulation, or excessive stimulation, of a pathway. The cAMP cascade system illustrates two different kinds of amplification: the first is magnitude amplification, which is an increase in output molecules in greater numbers than input molecules; and the second is sensitivity amplification, which is a greater percentage increase in ouput than the percentage increase in input. An example of magnitude amplification would be the production of 100 cAMP molecules from 1 active molecule of adenylate cyclase, and sensitivity amplification could be an increase in cAMP-dependent protein kinase activity of 200% by 100% increase in cAMP. Both kinds of amplification can occur at each step of a cascade, although the overall magnification in a cascade can also be calculated. For example, the overall magnitude amplification for glucagon stimulation of glycogen breakdown in the liver is represented by the number of glucose molecules produced divided by the number of glucagon molecules added, and can be greater than 10,000.

Keywords

Cyclic Nucleotide Regulatory Subunit Cyclic Nucleotide Binding Cyclic Nucleotide Binding Domain Phosphoprotein Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koshland, D.E., Jr., Goldbeter, A., and Stock, J.R. (1982) Science 217:220–225.PubMedCrossRefGoogle Scholar
  2. 2.
    Flockhart, D.A. and Corbin, J.D. (1982) CRC Crit. Rev. Biochem. 12:133–186.PubMedCrossRefGoogle Scholar
  3. 3.
    Corbin, J.D., Beebe, S.J., and Blackmore, P.F. (1985) J. Biol. Chem. 260:8731–8735.PubMedGoogle Scholar
  4. 4.
    Gettys, T.W., Blackmore, P.F., Redmon, J.B., Beebe, S.J., and Corbin, J.D. (1987) J. Biol. Chem. 262, (In press).Google Scholar
  5. 5.
    Weber, I.T., Takio, K., Titani, K., and Steitz, T.A. (1982) PNAS 79:7679–7683.PubMedCrossRefGoogle Scholar
  6. 6.
    de Crombrugghe, B., Busby, S., and Buc, H. (1984) Science 224:831–838.PubMedCrossRefGoogle Scholar
  7. Beebe, S.J., Koch, S.R., Granner, D.K., and Corbin, J.D. (1985) 13th International Congress of Biochemistry (Abstracts) Amsterdam, p. 649.Google Scholar
  8. 8.
    Rannels, S.R. and Corbin, J.D. (1981) J. Biol. Chem. 256:7871–7876.PubMedGoogle Scholar
  9. 9.
    Lincoln, T.M. and Corbin, J.D. (1983) Adv. Cyc1ic Nuc1eotide Res. 15:139–192.Google Scholar
  10. 10.
    Corbin, J.D. and Doskeland, S.O. (1983) J. Biol. Chem. 258:11391–11397.PubMedGoogle Scholar
  11. 11.
    Corbin, J.D. Ogreid, D., Miller, J.P., Suva, R.H., Jastorff, B., and Doskeland, S.O. (1986) J. Biol. Chem., 261:1208–1214.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jackie D. Corbin
    • 1
  • Stephen J. Beebe
    • 1
  • Charles E. Cobb
    • 1
  • Sharron H. Francis
    • 1
  • Jack N. Wells
    • 1
    • 2
  • Stanley L. Keeley
    • 1
  • Thomas W. Gettys
    • 1
  • Peter F. Blackmore
    • 1
  • Lynn Wolfe
    • 1
  • Leslie R. Landiss
    • 1
  1. 1.Dept. of Molecular Physiology and BiophysicsHoward Hughes Medical Institute Lab.NashvilleUSA
  2. 2.Dept. of PharmacologyVanderbilt Univ.NashvilleUSA

Personalised recommendations