Advertisement

Actin Polymerization

  • Elke Schröer
  • Klaus Ruhnau
  • Norma Selve
  • Albrecht Wegner
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 135)

Abstract

Actin filaments and microtubules make up the principal dynamic constituents of the cytoskeleton. Actin is capable of entering into a variety of interactions with other proteins which regulate its state. The simplest possible in vitro system — that in which the actin monomers polymerize to form long linear aggregates — has been found to embody a number of properties reflecting the dynamics of the turnover of actin filaments in cells. Actin filaments can quickly polymerize and depolymerize, they can spontaneously break and associate end to end, and an ATPase activity causes actin filaments to “treadmill”, that is to polymerize at one end and to depolymerize simultaneously at the other end.

Keywords

Actin Filament Actin Polymerization Actin Monomer Filament Length Linear Aggregate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oosawa, F. & Kasai, M. (1962) J. Mol. Biol. 4, 10–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Wegner, A. & Engel, J. (1975) Biophys. Chem. 3, 215–225.PubMedCrossRefGoogle Scholar
  3. 3.
    Wegner, A. & Savko, P. (1982) Biochemistry 21, 1909–1913.PubMedCrossRefGoogle Scholar
  4. 4.
    Frieden, C. & Goddette, D. W. (1983) Biochemistry 22, 5836–5843.PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper, J. A., Buhle, E. C., Walker, S. B., Tsong, T. Y. & Pollard, T. D. (1983) Biochemistry 22, 2193–2202.PubMedCrossRefGoogle Scholar
  6. 6.
    Lai, A. A., Korn, E. D. & Brenner, S. L. (1984) J. Biol. Chem. 259, 8794–8800.Google Scholar
  7. 7.
    Pollard, T. D. & Mooseker, M. S. (1981) J. Cell Biol. 88, 654–659.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonder, E. M., Fishkind, D. J. & Mooseker, M. S. (1983) Cell 34, 491–501.PubMedCrossRefGoogle Scholar
  9. 9.
    Nakaoka, Y. & Kasai, M. (1969) J. Mol. Biol. 44, 319–332.PubMedCrossRefGoogle Scholar
  10. 10.
    Kondo, H. & Ishiwata, S. (1976) J. Biochem. (Tokyo) 79, 159–171.Google Scholar
  11. 11.
    earlier, M.-F., Pantaloni, D. & Korn, E. D. (1984) J. Biol. Chem. 259, 9987–9991.Google Scholar
  12. 12.
    Grazi, E. & Trombetta, G. (1985) Biochem. J. 232, 297–300.PubMedGoogle Scholar
  13. 13.
    Straub, F. B. & Feuer, G. (1950) Biochim. Biophys. Acta 4, 455–470.CrossRefGoogle Scholar
  14. 14.
    Pollard, T. D. & Weeds, A. G. (1984) FEBS Lett. 170, 94–98.PubMedCrossRefGoogle Scholar
  15. 15.
    Earlier, M.-F., Pantaloni, D. & Korn, E. D. (1984) J. Biol. Chem.259, 9983–9986.Google Scholar
  16. 16.
    Pollard, T. D. (1984) J. Cell Biol. 99, 769–777.PubMedCrossRefGoogle Scholar
  17. 17.
    Coue, M. & Korn, E. D. (1986) J. Biol. Chem. 261, 1588–1593.PubMedGoogle Scholar
  18. 18.
    Wegner, A. (1976) J. Mol. Biol. 108, 139–150.PubMedCrossRefGoogle Scholar
  19. 19.
    Wegner, A. & Neuhaus, J.-M. (1981) J. Mol. Biol. 153, 681–693.PubMedCrossRefGoogle Scholar
  20. 20.
    Brenner, S. L. & Korn, E. D. (1979) J. Biol. Chem. 254, 9982–9985.PubMedGoogle Scholar
  21. 21.
    Wegner, A. & Isenberg, G. (1983) Proc. Natl. Acad. Sci. USA 80, 4922–4925.PubMedCrossRefGoogle Scholar
  22. 22.
    Selve, N. & Wegner, A. (1986) J. Mol. Biol. 187, 627–631.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang, Y. L. (1985) J. Cell Biol. 101, 597–602.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Elke Schröer
    • 1
  • Klaus Ruhnau
    • 1
  • Norma Selve
    • 1
  • Albrecht Wegner
    • 1
  1. 1.Institut für Physiologische Chemie IRuhr-Universität BochumBochumFederal Republic Germany

Personalised recommendations