Neuromodulatory Actions of Dopamine and Cholecystokinin in the Ventral Striatum

  • Conrad Chi-Yiu Yim
  • Lisa Sheehy
  • Gordon Mogenson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 295)


Electrophysiological investigations of the cellular actions of dopamine had focused in the past on its direct action on cell bodies of the postsynaptic neuron, assuming dopamine to be a neuromediating transmitter. Recent evidence suggests, however, that while dopamine undoubtedly has actions on the cell bodies of postsynaptic neurons, it may also have an important presynaptic neuromodulatory action on non-dopaminergic inputs to the ventral striatum (see Yim and Mogenson, 1986). There is also evidence that peptides such as cholecystokinin which coexists with dopamine in a subpopulation of the mesolimbic dopamine neurons may in turn modulate the neuromodulatory action of dopamine.


Locomotor Activity Nucleus Accumbens Ventral Tegmental Area Ventral Striatum Excitatory Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, E.D., and Jacobs, B.L., 1985, Dopaminergic modulation of sensory responses of striatal neurons: single unit studies. Brain Res., 358:27–33.PubMedCrossRefGoogle Scholar
  2. Altar, C.A., and Boyar, W.C., 1989, Brain CCK-8 receptors mediate the suppression of dopamine release by cholecystokinin. Brain Res., 483:321–326.PubMedCrossRefGoogle Scholar
  3. Arneric, S.P., and Reis, D.J., 1986, Somatostatin and cholecystokinin octapeptide differentially modulate the release of acetylcholine from caudate nucleus but not cerebral cortex: role of dopamine receptor activation, Brain Res., 374:153–161.PubMedCrossRefGoogle Scholar
  4. Bergstrom, D.A., and Walters, J.R., 1984, Dopamine attenuates the effects of GABA on single unit activity in the globus pallidus. Brain Res., 310:23–33.PubMedCrossRefGoogle Scholar
  5. Bernardi, G., Marciani, M.G., Morocutti, C., Pavone, F., and Stanzione, P., 1978, The action of dopamine on rat caudate neurones intracellularly recorded, Neurosci.Lett., 8:235–240.PubMedCrossRefGoogle Scholar
  6. Chiodo, L.A., and Bunney, B.S., 1983, Proglumide: Selective anatagonism of excitatory effects of cholecystokinin in central nervous system. Science, 219:1449–1451.PubMedCrossRefGoogle Scholar
  7. Chiodo, L.A., Freeman, A.S., and Bunney, B.S., 1987, Electrophysiological studies on the specificity of the cholecystokinin antagonist pro- glumide. Brain Res., 410:205–211.PubMedCrossRefGoogle Scholar
  8. Cohen, S.L., Knight, M., Tamminga, C.A., and Chase, T.N., 1982, Cholecystokinin effects on conditioned avoidance behaviour, stereotypy and catalepsy, Eur.J.Pharmacol., 83:213–222.PubMedCrossRefGoogle Scholar
  9. Crawley, J.N., 1988, Modulation of mesolimbic dopaminergic behaviors by cholecystokinin, Ann.N.Y.Acad.Sei., 537:380–396.CrossRefGoogle Scholar
  10. Crawley, J.N., Stivers, J.A., Blumstein, L.K., and Paul, S.M., 1985, Cholecystokinin potentiates dopamine-mediated behaviors: evidence for modulation specific to a site of coexistence, J.Neurosci., 5:1972–1983.PubMedGoogle Scholar
  11. DeFrance, J.F., Sikes, R.W., and Chronister, R.B., 1984, Effects of CCK-8 in the nucleus accumbens. Peptides, 5:1–6.PubMedCrossRefGoogle Scholar
  12. Dodd, J., and Kelly, J.S., 1981, The actions of cholecystokinin and related peptides on pyramidal neurons of the mammalian hippocampus. Brain Res., 205:337–350.PubMedCrossRefGoogle Scholar
  13. Ferron, A., Thierry, A.M., Le-Douarin, C., and Glowinski, J., 1984, Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Res., 302:257–265.PubMedCrossRefGoogle Scholar
  14. Freeman, A.S., and Chiodo, L.A., 1988, Electrophysiological effects of cholecystokinin octapeptide on identified rat nigrostriatal dopaminergic neurons. Brain Res., 439:266–274.PubMedCrossRefGoogle Scholar
  15. Fuxe, K., Andersson, K., Locatelli, V., Agnati, L.F., Hokfelt, T., Skirboll, L., and Mutt, V., 1980, Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection, Eur. J. Pharmacol., 67:325–331.CrossRefGoogle Scholar
  16. Herrling, P.L., and Hull, C.D., 1980, lontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons. Brain Res., 192:441–462.PubMedCrossRefGoogle Scholar
  17. Hirata, K., Yim, C.Y., and Mogenson, G.J., 1984, Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra. Brain Res., 321:1–8.PubMedCrossRefGoogle Scholar
  18. Hokfelt, T., Rehfeld, J., Skirboll, L., Ivemark, B., Goldstein, M., and Marley, K., 1980, Evidence for coexistence of dopamine and CCK in mesolimbic neurons. Nature, 285:476–478.PubMedCrossRefGoogle Scholar
  19. Hokfelt, T., Skirboll, L., Rehfeld, J., Goldstein, M., Marley, K., and Dann, O., 1980, A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing, Neuroscience, 5:2093–2124.PubMedCrossRefGoogle Scholar
  20. Hutchison, J.B., Strupish, J., and Nahorski, S.R., 1986, Release of endogenous dopamine and cholecystokinin from rat striatal slices: effects of amphetamine and dopamine antagonists. Brain Res., 370:310–314.PubMedCrossRefGoogle Scholar
  21. Ishibashi, S., Oomura, Y., Okajima, T., and Shibata, S., 1979, Cholecystokinin, motilin and secretin effects on the central nervous system, Physiol.Behav., 23:401–403.PubMedCrossRefGoogle Scholar
  22. Kaczmarek, L.K. and Levitan, I.B. 1987, Neuromodulation, Oxford University Press, New York.Google Scholar
  23. Katsuura, G., and Itch, S., 1982, Sedative action of cholecystokinin octapeptide on behavioral excitation by thyrotropin releasing hormone and methamphetamine in the rat, Jpn. J. Physiol., 32:83–91.PubMedCrossRefGoogle Scholar
  24. Kitai, S.T., Sugimori, M., and Kocsis, J.D., 1976, Excitatory nature of dopamine in the nigro-caudate pathway. Brain Res., 24:351–363.Google Scholar
  25. Kupfermann, I., 1979, Modulatory actions of neurotransmitters, Ann. Rev. Neurosci., 2:447–465.PubMedCrossRefGoogle Scholar
  26. Lane, R.F., Blaha, C.D., and Phillips, A.G., 1986, In vivo electrochemical analysis of cholecystokinin-induced inhibition of dopamine release in the nucleus accumbens. Brain Res., 397:200–204.PubMedCrossRefGoogle Scholar
  27. Markstein, R., and Hokfelt, T., 1984, Effect of cholecystokinin-octa- peptide on dopamine release from slices of cat caudate nucleus, J. Neuro. sci., 4:570–575.Google Scholar
  28. Martin, J.R., Beinfeld, M.C., and Wang, R.Y., 1986, Modulation of chole- cystokinin release from posterior nucleus accumbens by D-2 dopamine receptor. Brain Res., 397:253–258.PubMedCrossRefGoogle Scholar
  29. Mercuri, N., Bernardi, G., Calabresi, P., Cotugno, A., Levi, G., and Stanzione, P., 1985, Dopamine decreases cell excitability in rat striatal neurons by pre- and postsynaptic mechanisms. Brain Res., 358:110–121.PubMedCrossRefGoogle Scholar
  30. Meyer, D.K., and Krauss, J., 1983, Dopamine modulates cholecystokinin release in neostriatum. Nature, 301:338–340.PubMedCrossRefGoogle Scholar
  31. Mogenson, G.J., 1977, The Neurobiology of Behavior: An Introduction, Erlbaum.,Hillsdale., 1:Google Scholar
  32. Mogenson, G.J., 1987, Limbic-Motor Integration, in: “Progress in Psychobiology and Physiological Psychology,” A.N. Epstein, ed., Academic Press Inc., New York, p. 117–170.Google Scholar
  33. Morin, M.P., De Marchi, P., Champagnat, J., Vanderhaeghen, J.J., Rossier, J., and Denavit-Saubie, M., 1983, Inhibitory effect of cholecystokinin octapeptide on neurons in the nucleus tractus solitarius. Brain Res., 265:333–338.PubMedCrossRefGoogle Scholar
  34. Murphy, R.B., and Schuster, D.I., 1982, Modulation of -dopamine binding by cholecystokinin octapeptide (CCK-8), Peptides, 3:539–543.PubMedCrossRefGoogle Scholar
  35. Phillips, A.G., Blaha, C.D., Fibiger, H.C., and Lane, R.F., 1988, Interactions between mesolimbic dopamine neurons, cholecystokinin, and neurotensin: evidence using in vivo voltammetry, Ann. N. Y. Acad. Sci., 537:347–361.PubMedCrossRefGoogle Scholar
  36. Phillips, A.G., Jakubovic, A., and Fibiger, H.C., 1987, Increased in vivo tyrosine hydroxylase activity in rat telencephalon produced by self- stimulation of the ventral tegmental area. Brain Res., 402:109–116.PubMedCrossRefGoogle Scholar
  37. Phillis, J.W., and Kirpatrick, J.R., 1980, The actions of motilin, cholecystokinin, somatostatin, vasoactive interstinal peptide, and other peptides on rat cerebral cortical neurons. Can. J. Phvsiol., 58:612–623.CrossRefGoogle Scholar
  38. Pijnenburg, A.J.J., Woodruff, G.N., and Van Rossum, J.M., 1973, Ergometrine-induced locomotor activity following intracerebral injection into the nucleus accumbens. Brain Res., 59:289–302.PubMedCrossRefGoogle Scholar
  39. Robinson, E., 1963, Effect of amygdalectomy on fear-motivated behaviour of rats, J.Comp.Phvsiol.Psychol., 56:814–820.CrossRefGoogle Scholar
  40. Schneider, L.H., Alpert, J.E., and Iversen, S.D., 1983, CCK-8 modulation of mesolimbic dopamine: antagonism of amphetamine-stimulated behaviors, Peptides, 4:749–753.PubMedCrossRefGoogle Scholar
  41. Skirboll, L.R., Grace, A.A., Hommer, D.W., Rehfeld, J., Goldstein, M., Hokfelt, T., and Bunney, B.S., 1981, Peptide-monoamine coexistence: studies of the actions of cholecystokinin-like peptides on the electrical activity of midbrain dopamine neurons, Neuroscience, 6:2111–2124.PubMedCrossRefGoogle Scholar
  42. Takeda, Y., Kamiya, Y., Honda, K., Takano, Y., and Kamiya, H., 1986, Effect of injection of CCK-8 into the nucleus caudatus on the behavior of rats, Jpn. J. Pharmacol., 40:569–575.PubMedCrossRefGoogle Scholar
  43. Thierry, A.M., Mantz, J., Milla, C., and Glowinski, J., 1988, Influence of the mesocortical/prefrontal dopamine neurons on their target cells, Ann. N.Y. Acad. Sci., 537:101–111.PubMedCrossRefGoogle Scholar
  44. Ursin, H., and Kaada, B.R., 1960, Subcortical structures mediating the attention response induced by amygdala stimulation, Exp. Neurol., 2:109–122.PubMedCrossRefGoogle Scholar
  45. Vaccarino, F.J., and Vaccarino, A.L., 1989, Antagonism of cholecystokinin function in the rostral and caudal nucleus accumbens: differential effects on brain stimulation reward, Neurosei. Lett., 97:151–156.CrossRefGoogle Scholar
  46. Van Ree, J.M., Gaffori, O., and De Wied, D., 1983, In rats the behavioral profile of CCK-8-related peptides resembles that of antipsychotic agents, Eur. J. Pharmacol., 93:65–78.Google Scholar
  47. Vives, F., and Mogenson, G.J., 1986, Electrophysiological study of the effects of D1 and D2 dopamine antagonists on the interaction of converging inputs from the sensory-motor cortex and substantia nigra neurons in the rat, Neuroscience, 17:349–359.PubMedCrossRefGoogle Scholar
  48. Voigt, M., Wang, R.Y., and Westfall, T.C., 1986, Cholecystokinin octa- peptides alter the release of endogenous dopamine from the rat nucleus accumbens in vitro, J. Pharmacol. Exp. Ther., 237:147–153.PubMedGoogle Scholar
  49. Voigt, M.M., and Wang, R.Y., 1984, In vivo release of dopamine in the nucleus accumbens of the rab: modulation by cholecystokinin. Brain Res., 296:189–193.PubMedCrossRefGoogle Scholar
  50. Wang, R.Y., 1988, Cholecystokinin, dopamine, and schizophrenia: recent progress and current problems, Ann. N. Y. Acad. Sci., 537:362–379.PubMedCrossRefGoogle Scholar
  51. Wang, R.Y., and Hu, X.T., 1986, Does cholecystokinin potentiate dopamine action in the nucleus accumbens. Brain Res., 380:363–367.PubMedCrossRefGoogle Scholar
  52. Weiss, F., Tanzer, D.J., and Ettenberg, A., 1988, Opposite actions of CCK-8 on amphetamine-induced hyperlocomotion and stereotypy following intracerebroventricular and intra-accumbens injections in rats, Pharmacol. Biochem. Behav., 30:309–317.PubMedCrossRefGoogle Scholar
  53. White, N., and Weingarten, H., 1976, Effects of amygdaloid lesions on exploration by rats, Physiol. Behav., 17:73–79.PubMedCrossRefGoogle Scholar
  54. Yang, C.R., and Mogenson, G.J., 1984, Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res., 324:69–84.PubMedCrossRefGoogle Scholar
  55. Yang, C.R., and Mogenson, G.J., 1986, Dopamine enhances terminal excitability of hippocampal- accumbens neurons via D2 receptor: role of dopamine in presynaptic inhibition, J. Neurosci., 6:2470–2478.PubMedGoogle Scholar
  56. Yim, C.Y., and Mogenson, G.J., 1982, Response of nucleus accumbens neurons to amygdala stimulation and its modification by dopamine. Brain Res., 239:401–415.PubMedCrossRefGoogle Scholar
  57. Yim, C.Y., and Mogenson, G.J., 1986, Mesolimbic dopamine projection modulates amygdala-evoked EPSP in nucleus accumbens neurons: an in vivo study. Brain Res., 369:347–352.PubMedCrossRefGoogle Scholar
  58. Yim, C.Y., and Mogenson, G.J., 1988, Neuromodulatory action of dopamine in the nucleus accumbens: an in vivo intracellular study, Neuroscience, 26:403–415.PubMedCrossRefGoogle Scholar
  59. Yim, C.Y., and Mogenson, G.J., 1989, Low doses of accumbens dopamine modulates amygdala suppression of spontaneous exploratory activity in rats. Brain Res., 477:202–210.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Conrad Chi-Yiu Yim
    • 1
  • Lisa Sheehy
    • 1
  • Gordon Mogenson
    • 1
  1. 1.Departments of Clinical Neurological Sciences and PhysiologyUniversity of Western OntarioLondonCanada

Personalised recommendations