Advertisement

Substance P Excites Cultured Cholinergic Neurons in the Basal Forebrain

  • Yasuko Nakajima
  • Peter R. Stanfield
  • Kazuhiko Yamaguchi
  • Shigehiro Nakajima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 295)

Abstract

With the introduction of choline acetyltransferase immunocytochemistry, it has recently been shown that there are nuclei containing cholinergic neurons in the basal forebrain, which innervate wide areas of the cerebral cortex and hippocampus. These basal forebrain nuclei include the nucleus basalis of Meynert, the medial septal nucleus and the diagonal band nuclei. These cholinergic neurons in the basal forebrain nuclei severely degenerate in patients with Alzheimer’s disease (Coyle et al., 1983; Terry and Katzman, 1983). Despite their clinical importance, physiological and pharmacological properties of these cholinergic neurons are not well understood.

Keywords

Basal Forebrain Pertussis Toxin Nucleus Basalis Potassium Conductance Locus Coeruleus Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P. R., Brown, D. A., and Jones, S. W., 1983, Substance P inhibits the M-current in bullfrog sympathetic neurones, Br. J. Pharmac., 79:330–333.Google Scholar
  2. Adrian, R. H., and Freygang, W. H., 1962, The potassium and chloride conductance of frog muscle membrane, J. Physiol., 163:61–103.PubMedGoogle Scholar
  3. Almers, W., 1972, Potassium conductance changes in skeletal muscle and the potassium concentration in the transverse tubules, J. Physiol., 225:33–56.PubMedGoogle Scholar
  4. Banks, W. A., and Kastin, A. J., 1985, Peptides and the blood-brain barrier: Lipophilicity as a predictor of permeability, Br. Res. Bull., 15:287- 292.CrossRefGoogle Scholar
  5. Beach, T. G., Tago, H., and McGeer, E. G., 1987, Light microscopic evidence for a substance P-containing innervation of the human nucleus basalis of Meynert, Brain Res., 408:251–257.PubMedCrossRefGoogle Scholar
  6. Beal, M. F., and Mazurek, M. F., 1987, Substance P-like immunoreactivity is reduced in Alzheimer’s disease cerebral cortex, Neurology., 37:1205- 1209.PubMedGoogle Scholar
  7. Benson, J. A., and Levitan, I. B., 1983, Serotonin increases an anomalously rectifying K current in the Aplysia neuron R15, Proc. Natl. Acad. Sci. , U. S. A., 80:3522–3525.PubMedCrossRefGoogle Scholar
  8. Bolam, J. P., Ingham, C. A., Izzo, P. N., Levey, A. I., Rye, D. B., Smith, A. D., and Wainer, B. H., 1986, Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: A double immunocytochemical study in the rat. Brain Res., 397:279–289.PubMedCrossRefGoogle Scholar
  9. Cassel, D. and Selinger, Z., 1977, Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. , U. S. A., 74:3307–3311.PubMedCrossRefGoogle Scholar
  10. Coyle, J. T., Price, D. L., and DeLong, M. R., 1983, Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science. 219:1184–1190.PubMedCrossRefGoogle Scholar
  11. Crystal, H. A., and Davies, P., 1982, Cortical substance P-like immunoreactivity in cases of Alzheimer’s disease and senile dementia of the Alzheimer type, J. Neurochem., 38:1781–1784.PubMedCrossRefGoogle Scholar
  12. Dietl, M., Probst, A., and Palacios, J. M., 1986, Mapping of substance P receptor sites in the human brain: High densities in the substantia innominata and effect of senile dementia, Soc. Neurosci. Abstr., 12:831.Google Scholar
  13. Dryer, S. E., and Chiappinelli, V. A., 1985, Properties of choroid and ciliary neurons in the avian ciliary ganglion and evidence for substance P as a neurotransmitter, J. Neurosci., 5:2654–2661.PubMedGoogle Scholar
  14. Dun, N. J., and Karczmar, A. G., 1979, Actions of substance P on sympathetic neurons. Neuropharmacology., 18:215–218.PubMedCrossRefGoogle Scholar
  15. Fong, H. K. W., Yoshimoto, K. K., Eversole-Cire, P., and Simon, M. I., 1988, Identification of a GTP-binding protein a subunit that lacks an apparent ADP-ribosylation site for pertussis toxin, Proc. Natl. Acad. Sci. , U. S. A., 85:3066–3070.PubMedCrossRefGoogle Scholar
  16. Gay, L. A., and Stanfield, P. R., 1977, Cs causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres. Nature., 267:169–170.PubMedCrossRefGoogle Scholar
  17. Hagiwara, S., 1983, “Membrane potential-dependent ion channels in cell membrane. Phylogenetic and developmental approaches”. Raven Press, New York.Google Scholar
  18. Hagiwara, S., Miyazaki, S., and Rosenthal, N. P., 1976, Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish, J. Gen. Physiol., 67:621–638.PubMedCrossRefGoogle Scholar
  19. Hagiwara, S., and Takahashi, K., 1974, The anomalous rectification and cation selectivity of the membrane of a starfish egg cell, J. Membrane Biol., 18:61–80.CrossRefGoogle Scholar
  20. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflüget’s Arch., 391:85- 100.CrossRefGoogle Scholar
  21. Hille, B., and Schwarz, W., 1978, Potassium channels as multi-ion single- file pores, J. Gen. Physiol., 72:409–442.PubMedCrossRefGoogle Scholar
  22. Hodgkin, A. L., and Horowicz, P., 1959, The influence of potassium and chloride ions on the membrane potential of single muscle fibres, J. Physiol., 148:127–160.PubMedGoogle Scholar
  23. Inoue, M., Nakajima S., and Nakajima, Y., 1988, Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism, J. Physiol., 407:177–198.PubMedGoogle Scholar
  24. Kafetzopoulos, E., Holzhäuer, M.- S., and Huston, J. P., 1986, Substance P injected into the region of the nucleus basalis magnocellularis facilitates performance of an inhibitory avoidance task, Psychopharmacology. 90:281–283.PubMedCrossRefGoogle Scholar
  25. Katz, B., 1949, Les constantes électriques de la membrane du muscle, Arch.Sci. Physiol., 3:285–299.Google Scholar
  26. Lee, C. M., Iversen, L. L., Hanley, M. R. and Sandberg, B. E. B., 1982, The possible existence of multiple receptors for substance P, Naunyn-Schmiedeberg’s Arch.Pharm., 318:281–287.CrossRefGoogle Scholar
  27. Leech, C. A., and Stanfield, P. R., 1981, Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium, J. Physiol., 319:295–309.PubMedGoogle Scholar
  28. Levey, A. I., Wainer, B. H., Mufson, E. J., and M.-M. Mesulam, 1983, Co- localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum, Neuroscience. 9:9–22.PubMedCrossRefGoogle Scholar
  29. Masuko, S., Nakajima, Y., Nakajima, S., and Yamaguchi, K., 1986, Noradrenergic neurons from the locus coeruleus in dissociated cell culture: Culture methods, morphology and electrophysiology, J. Neurosci., 6:3229–3241.PubMedGoogle Scholar
  30. Matsuoka, M., Itoh, H., Kozasa, T., and Kaziro, Y., 1988, Sequence analysis of cDNA and genomic DNA for a putative pertussis toxin-insensitive guanine nucleotide-binding regulatory protein a subunit, Proc. Natl. Acad.Sci., U. S. A. 85:5384–5388.PubMedCrossRefGoogle Scholar
  31. Mihara, S., North, R. A., and Surprenant, A., 1987. Somatostatin increases an inwardly rectifying potassium conductance in guinea-pig submucous plexus neurones. J. Physiol., 390:335–355.PubMedGoogle Scholar
  32. Nakajima, Y., Nakajima, S., and Inoue, M., 1988, Pertussis toxin-insensitive G protein mediates substance P-induced inhibition of potassium channels in brain neurons, Proc. Natl. Acad. Sci.U. S. A., 85:3643–3647.PubMedCrossRefGoogle Scholar
  33. Nakajima, Y., Nakajima, S., Obata, K., Carlson, C. G., and Yamaguchi, K., 1985, Dissociated cell culture of cholinergic neurons from nucleus basalis of Meynert and other basal forebrain nuclei, Proc. Natl. Acad. Sci. ,U.S.A. 82:6325–6329.PubMedCrossRefGoogle Scholar
  34. Nicoll, R. A., Schenker, C., and Leeman, S. E., 1980, Substance P as a transmitter candidate, Ann. Rev. Neurosci., 3:227–268.PubMedCrossRefGoogle Scholar
  35. Ohmori, H., 1978, Inactivation kinetics and steady-state current noise in the anomalous rectifier of tunicate egg cell membranes, J. Physiol., 281:77–99.PubMedGoogle Scholar
  36. Otsuka, M., Konishi, S., Yanagisawa, M., Tsunoo, A., and Akagi, H., 1982, Role of substance P as a sensory transmitter in spinal cord and sympathetic ganglia, in: “Ciba Foundation Symposium, Vol. 91: Substance P in the Nervous System”, Pitman, London, pp. 13–34.Google Scholar
  37. Pennefather, P. S., Heisler, S. and MacDonald, J. F., 1988, A potassium conductance contributes to the action of somatostatin-14 to suppress ACTH secretion, Brain. Res., 444:346–350.PubMedCrossRefGoogle Scholar
  38. Pfaffinger, P., 1988, Muscarine and t-LHRH suppress M-current by activating an lAP-insensitive G-protein, J. Neurosci., 8:3343–3353.PubMedGoogle Scholar
  39. Sakmann, B., Noma, A., and Trautwein, W., 1983, Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart, Nature., 303:250–253.PubMedCrossRefGoogle Scholar
  40. Siess, W., Winegar, D. A., and Lapetina, E. G., 1990, Rapl-b is phosphorylated by protein kinase A in intact human platelets, Biochem. Biophys. Res. Commun., 170: 994–950.CrossRefGoogle Scholar
  41. Stanfield, P. R., Nakajima, Y., and Yamaguchi, K., 1985, Substance P raises neuronal membrane excitability by reducing inward rectification, Nature, 315:498–501.PubMedCrossRefGoogle Scholar
  42. Stanfield, P. R., Standen, N. B., Leech, C. A., and Ashcroft, F. M., 1981, Inward rectification in skeletal muscle fibres, in: “Adv. Physiol. Sci., Vol. 5: Molecular and cellular aspects of muscle function”, Varger, E., Köver, A., Kovacs, T., and Kovacs, L., eds., Pergamon Press, New York, pp. 247–262.Google Scholar
  43. Terry, R. D., and Katzman, R., 1983, Senile dementia of the Alzheimer type, Ann. Neurol., 14:497–506.PubMedCrossRefGoogle Scholar
  44. Tomaz, C., and Huston, J. P., 1986, Facilitation of conditioned inhibitory avoidance by post-trial peripheral injection of substance P, Pharmacol. Biochem. Behav., 25:469–472.PubMedCrossRefGoogle Scholar
  45. Yamaguchi, K., Nakajima, Y., Nakajima, S., and Stanfield, P. R., 1990, Modulation of inwardly rectifying channels by substance P in cholinergic neurones from rat brain in culture, J. Physiol., 426:499–520.PubMedGoogle Scholar
  46. Yamashita, N., Shibuya, N., and Ogata, E., 1988, Requirement of GTP on somatostatin-induced K+ current in human pituitary tumor cells, Proc. Natl. Acad. Sci. , U. S. A., 85:4924–4928.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Yasuko Nakajima
    • 1
  • Peter R. Stanfield
    • 1
  • Kazuhiko Yamaguchi
    • 1
  • Shigehiro Nakajima
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations