Advertisement

γ-Aminobutyric Acid and µ-Opioid Receptor Localization and Adaptation in the Basal Forebrain

  • Lynn Churchill
  • Andrea Bourdelais
  • Mark Austin
  • Daniel S. Zahm
  • Peter W. Kalivas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 295)

Abstract

The projection from the nucleus accumbens to ventral pallidum has been functionally implicated in the integration of motivation and locomotion, since the limbic system and the extrapyramidal motor system interconnect in this projection (Mogenson et al., 1980). The nucleus accumbens receives innervation from dopaminergic neurons in the ventral tegmental area and substantia nigra (Fallon and Moore, 1978; Gerfen et al., 1987) and projects topographically onto the ventral pallidum (Conrad and Pfaff, 197 6; Nauta et al., 1978; Mogenson et al., 1983; Groenewegen and Russchen, 1984). The projection from nucleus accumbens to ventral pallidum appears to contain γ-aminobutyric acid (GABA) and enkephalin. Electrolytic lesions of the nucleus accumbens significantly decreased glutamic acid decarboxylase (GAD), the synthetic enzyme for GABA, in the ventral pallidum (Walaas and Fonnum, 1979) and ibotenic acid lesions of the nucleus accumbens significantly decreased enkephalin-like immunoreactivity in the ventral pallidum (Zaborszky et al., 1985).

Keywords

Nucleus Accumbens GABAA Receptor Globus Pallidus Basal Forebrain Glutamic Acid Decarboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou-Khalil, B., Young, A. B., and Penney, J. B., 1984, Evidence for the presynaptic localization of opiate binding sites on striatal efferent fibers. Brain Res., 323: 21–29.PubMedCrossRefGoogle Scholar
  2. Albert, D. J., Petrovic, D. M., and Walsh, M. L., 1989, Medial accumbens lesions attenuate testosterone-dependent aggression in male rats, Phvsiol. Behav., 46:625–631.CrossRefGoogle Scholar
  3. Austin, M. C., and Kalivas, P. W., 1988, The effect of cholinergic stimulation in the nucleus accumbens on locomotor behavior. Brain Res., 441:209–214.PubMedCrossRefGoogle Scholar
  4. Austin, M. C., and Kalivas, P. W., 1989, Blockade of enkephalinergic and GABAergic mediated locomotion in the nucleus accumbens by muscimol in the ventral pallidum, Jpn. J. Pharmacol., 50:487–490.PubMedCrossRefGoogle Scholar
  5. Austin, M. C., and Kalivas, P. W., 1990, Enkephalinergic and GABAergic modulation of motor activity in the ventral pallidum, J. Pharmacol. Exp. Ther., 252:1370–1377.PubMedGoogle Scholar
  6. Baud, P., Mayo, W., LeMoal, M., and Simon, H., 1988, Locomotor hyperactivity in the rat after infusion of muscimol and [D- ala2]met-enkephalin into the nucleus basalis magnocellularis. Possible interaction with cortical cholinergic projections. Brain Res., 452:203–211.PubMedCrossRefGoogle Scholar
  7. Chesselet, M.-F., Weiss, L., Wuenschell, C., Tobin, A. J., and Affolter, H.-U., 1987, Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase and tachykinins in the basal ganglia: Anin situ hybridization study in the rodent brain, J.Comp. Neurol., 262:125–140.PubMedCrossRefGoogle Scholar
  8. Churchill, L., Dilts, R. P., and Kalivas, P. W., 1990, Changes in γ-ainobutyric acid, µ-opioid and neurotensin receptors in the accumbens-pallidal projection after discrete quinolinic acid lesions in the nucleus accumbens. BrainRes., 511:41–54.PubMedCrossRefGoogle Scholar
  9. Churchill, L., Bourdelais, A., Austin, M. C., Lolait, S.J., Mahan, L.C., O’Carroll, A.-M., and Kalivas, P. W., in press. Lack of presynaptic GABAa receptors containing al and β2 subunits on the projection from the nucleus accumbens to the ventral pallidum: Evidence derived from receptor autoradiography and in situ hybridization. Synapse.Google Scholar
  10. Conrad, L. C. A., and Pfaff, D. W., 1976, Autoradiographic tracing of nucleus accumbens efferents in the rat. BrainRes., 113: 589–596.PubMedCrossRefGoogle Scholar
  11. Fallon, J. H., and Moore, R. Y., 1978, Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum, J.Comp. Neurol., 180:545–580.PubMedCrossRefGoogle Scholar
  12. Foster, A. C., Collins, J. F., and Schwarcz, R., 1983, On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds. Neuropharmacology, 22:1331–1342.PubMedCrossRefGoogle Scholar
  13. Gerfen, C. R., Herkenham, M., and Thibault, J., 1987, The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems, J. Neurosci., 7:3915–3934.PubMedGoogle Scholar
  14. Groenewegen, H. J., and Russchen, F. T., 1984, Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: A tracing and immunohistochemical study in the cat, J.Comp. Neurol., 223:347–367.PubMedCrossRefGoogle Scholar
  15. Groenewegen, H. J., Meredith, G. E., Berendse, H. W., Voorn, P., and Wolters, J. G., 1989, The compartmental organization of the ventral striatum in the rat, in: “Neural Basis for Disorders in Movement,” A. Grossman and B. Sambrook, eds., Libbey and Co., London, pp. 45–54.Google Scholar
  16. Heimer, L., Zahm, D. S., Churchill, L., Kalivas, P. W., and Wohltman, C., 1990, Specificity in the projection pattern of accumbal core and shell, Neuroscience. in press.Google Scholar
  17. Jones, D. L., and Mogenson, G. J., 1980, Nucleus accumbens to globus pallidus GABA projection: Electrophysiological and iontophoretic investigations. Brain Res., 188:93–105.PubMedCrossRefGoogle Scholar
  18. Kalivas, P. W., Widerlov, E., Stanley, D., Breese, G., and Prange, A. J. Jr., 1983, Enkephalin action on the mesolimbic system: A dopamine-dependent and a dopamine- independent increase in locomotor activity. J. Pharmacol. Exp. Ther., 227:229–237.PubMedGoogle Scholar
  19. Kobayashi, Y., Kaufman, D.L. and Tobin, A.J., 1987, Glutamic acid decarboxylase cDNA: nucleotide sequence encoding an enzymatically active fusion protein. J. Neurosci., 7:2768- 2772.PubMedGoogle Scholar
  20. Khrestchatisky, M., MacLennan, A.J., Chiang, M.-Y., Xu, W., Jackson, M.B., Brecha, N., Sternini, C., Olsen, R.W. and Tobin, A. J., 1989, A novel a subunit in rat brain GABAa receptors. Neuron., 3:745–753.PubMedCrossRefGoogle Scholar
  21. Levitan, E.S., Schofield, P.R., Burt, D.R., Rhee, L.M., Wisden, W., Kohier, M., Fujita, N., Rodriquez, H.F., Stephenson, A., Darlison, M.G., Barnard, E.A. and Seeburg, P.H., 1988, Structural and functional basis for GABAa receptor heterogeneity. Nature., 335:76–79.PubMedCrossRefGoogle Scholar
  22. Lolait, S.J., O’Carroll, A.-M., Kusano, K., Muller, J.M., Brownstein, M.J. and Mahan, L.C., 1989a, Cloning and expression of a novel GABAa receptor. FEBS Letters., 246:145–148.PubMedCrossRefGoogle Scholar
  23. Lolait, S.J., O’Carroll, A.-M., Kusano, K. and Mahan, L.C., 1989b, Pharmacological characterization and region specific expression in brain of β2 and β3 subunits of the rat GABAa receptor. FEBS Letters., 258:17–21.PubMedCrossRefGoogle Scholar
  24. Malherbe, P., Sigel, E., Baur, R., Persohn, E., Richards, J.G. and Möhler, H., 1990, Functional expression and sites of gene transcription of a novel a subunit of the GABAa receptor in rat brain. FEBS Letters., 260:261–265.PubMedCrossRefGoogle Scholar
  25. Mogenson, G. J., and Nielsen, M. A., 1983, Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity. Brain Res. Bull., 11:309–314.PubMedCrossRefGoogle Scholar
  26. Mogenson, G. J., Jones, D. L., and Yim, C. Y., 1980, From motivation to action: Functional interface between the limbic system and the motor system, Prog. Neurobiol., 14:69–97.PubMedCrossRefGoogle Scholar
  27. Mogenson, G. J., Swanson, L. W., and Wu, M., 1983, Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic - lateral hypothalamic area: An anatomical and electrophysiological investigation in the rat, J. Neurosci., 3:189–202.PubMedGoogle Scholar
  28. Montpied, P., Martin, B.M., Cottingham, S.L., Stubblefield, A.K., Ginns, E.I., and Paul, S.M., 1988, Regional distribution of the GABAA/benzodiazepine receptor (a subunit) mRNA in rat brain. J. Neurochem., 51:1651–1654.PubMedCrossRefGoogle Scholar
  29. Morgenstern, R., Mende, T., Gold, R., Lemme, P., and Oelssner, W., 1984, Drug-induced modulation of locomotor hyperactivity induced by Picrotoxin in nucleus accumbens, Pharmacol. Biochem. Behav., 21:501–506.PubMedCrossRefGoogle Scholar
  30. Nauta, W. J. H., Smith, G. P., Faull, R. L. M., and Domesick, V. B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience, 3:385- 401.PubMedCrossRefGoogle Scholar
  31. Pan, H. S., Frey, K. A., Young, A. B., and Penney, J. B. Jr., 1983, Changes in [3H]muscimol binding in substantia nigra, entopeduncular nucleus, globus pallidus, and thalamus after striatal lesions as demonstrated by quantitative receptor autoradiography, J. Neurosci., 3:1189–1198.PubMedGoogle Scholar
  32. Paxinos, G., and Watson, C., 1986, “The Rat Brain in Stereotaxic Coordinates,” 2nd edition. Academic Press,Google Scholar
  33. Orlando, FL., Pert, A., and Sivit, C., 1977, Neuroanatomical focus for morphine and enkephalin-induced hypermotility. Nature, 265:645–647.CrossRefGoogle Scholar
  34. Russell, V. A., Allin, R., Lamm, M. C. L., and Taljaard, J. J. F., 1989, Increased dopamine D2 receptor-mediated inhibition of [14C]acetylcholine release in the dorsomedial part of the nucleus accumbens, Neurochem. Res., 14:877–881.PubMedCrossRefGoogle Scholar
  35. Scheel-Kruger, J., 1984, On the role of GABA for striatal functions. Interaction between GABA and enkephalin in the pallidal systems. Neuropharmacology, 23:867–868.CrossRefGoogle Scholar
  36. Schofield, P.R., 1989, The GABAa receptor: molecular biology reveals a complex picture. Trends in Pharmaceut.Sci., 10: 476–478.CrossRefGoogle Scholar
  37. Schwarcz, R., Whetsell, W. O. Jr., and Mangano, R. M., 1983, Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain. Science, 219:316–318.PubMedCrossRefGoogle Scholar
  38. Sequier, J.M, Richards, J.G., Malherbe, P., Price, G.W., Mathews, S., and Möhler, H., 1988, Mapping of brain areas containing RNA homologous to cDNAs encoding the a and β subunits of the rat GABAA γ-aminobutyrate receptor, Proc. Natl. Acad.Sci., 85:7815–7819.PubMedCrossRefGoogle Scholar
  39. Shivers, B.D., Killisch, I., Sprengel, R., Sontheimer, H., Kohier, M., Schofield, P.R., andSeeburg, P.H., 1989, Two novel GABAa receptor subunits exist in distinct neuronal subpopulations. Neuron., 3:327–337.PubMedCrossRefGoogle Scholar
  40. Stinus, L., Winnock, M., and Kelley, A.E., 1985, Chronic neuroleptic treatment and mesolimbic dopamine denervation induce behavioral supersensitivity to opiates. Psychopharmacoloqy, 85: 323–328.CrossRefGoogle Scholar
  41. Swerdlow, N. R., and Koob, G. F., 1984, The neural substrates of apomorphine-stimulated locomotor activity following denervation of the nucleus accumbens. LifeSci., 35:2537- 2544.PubMedCrossRefGoogle Scholar
  42. Swerdlow, N. R., Swanson, L. W., and Koob, G. F., 1984, Substantia innominata: Critical link in the behavioral expression, of mesolimbic dopamine stimulation in the rat, Neurosci. Lett., 50:19–24.PubMedCrossRefGoogle Scholar
  43. Vaccarino, F. J., and Rankin, J., 1989, Nucleus accumbens cholecystokinin (CCK) can either attenuate or potentiate amphetamine-induced locomotor activity: Evidence for rostral-caudal differences in accumbens CCK function, Behav. Neurosci., 103:831–836.PubMedCrossRefGoogle Scholar
  44. Voorn, P., Gerfen, C. R., and Groenewegen, H. J., 1989, Compartmental organization of the ventral striatum of the rat: Immunohistochemical distribution of enkephalin, substance P, dopamine and calcium binding protein, J.Comp. Neurol., 289:189–201.PubMedCrossRefGoogle Scholar
  45. Waksman, G., Hamel, E., Delay-Goyet, P., and Roques, B. P., 1987, Neutral endopeptidase-24.11, µ and δ-opioid receptors after selective brain lesions: An autoradiographic study. Brain Res., 436:205–216.PubMedCrossRefGoogle Scholar
  46. Walaas, I., and Fonnum, F., 1979, The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions, Brain Res., 177:325–336.PubMedCrossRefGoogle Scholar
  47. Williams, S. F., and Herberg, L. J., 1987, Motivational vs. motor effects of striatal and pallidal GABAergic projections to subthalamic and entopeduncular nuclei, ventromedial thalamus and ventral globus pallidus, Pharmacol. Biochem. Behav., 26:49–55.PubMedCrossRefGoogle Scholar
  48. Yoshikawa, T., Fukamauchi, F., Shibuya, H., and Takahashi, R., 1989, Regional heterogeneity with the nucleus accumbens concerning the effects of dopaminergic agents on the content of cholecystokinin, Neurochem. Int., 14:467–469.PubMedCrossRefGoogle Scholar
  49. Young, W. S. III, 1989, In situ hybridization histochemical detection of neuropeptide mRNA using DNA and RNA probes, Meth. in Enzymol., 168:702–710.CrossRefGoogle Scholar
  50. Zaborszky, L., Alheid, G. F., and Heimer, L., 1985, Mapping of transmitter - specific connections: Simultaneous demonstration of anterograde degeneration and changes in the immunostaining pattern induced by lesions. J. Neurosci. Methods, 14:255–266.PubMedCrossRefGoogle Scholar
  51. Zahm, D. S., 1989, The ventral striatopallidal parts of the basal ganglia in the rat. II. Compartmentation of ventral pallidal efferents. Neuroscience, 30:33–50.PubMedCrossRefGoogle Scholar
  52. Zahm, D. S., and Heimer, L., 1988, Ventral striatopallidal parts of the basal ganglia in the rat: I. Neurochemical compartmentation as reflected by the distributions of neurotensin and substance P immunoreactivity, J.Comp. Neurol., 272:516–535.PubMedCrossRefGoogle Scholar
  53. Zahm, D. S., and Heimer, L., 1990, Two transpallidal pathways originating in nucleus accumbens, J.Comp. Neurol., 302:437–446.PubMedCrossRefGoogle Scholar
  54. Zahm, D. S., Zaborszky, L., Alones, V. E., and Heimer, L., 1985, Evidence for the coexistence of glutamate decarboxylase and met-enkephalin immunoreactivities in axon terminals of rat ventral pallidum. Brain Res., 325:317–321.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Lynn Churchill
    • 1
  • Andrea Bourdelais
    • 1
  • Mark Austin
    • 1
    • 2
  • Daniel S. Zahm
    • 1
    • 3
  • Peter W. Kalivas
    • 1
  1. 1.Department of Veterinary & Comparative Anatomy, Pharmacology and PhysiologyWashington State UniversityPullmanUSA
  2. 2.National Institute of Mental HealthBethesdaUSA
  3. 3.Department of Anatomy and NeurobiologySt. Louis School of MedicineSt. LouisUSA

Personalised recommendations