The Pharmacology of Basal Forebrain Involvement in Cognition

  • James J. Chrobak
  • T. Celeste Napier
  • Israel Hanin
  • Thomas J. Walsh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 295)


Magnocellular basal nucleus (MBN) neurons, a majority of which are cholinergic, directly influence cortical neurophysiology. These neurons appear to be part of a diffuse cortically projecting system that includes brain stem monoaminergic neurons as well as the MBN column. The entire system appears to modify cortical excitability in relation to an animal’s behavioral state (see Saper, 1987). By regulating activity within the entire cortical mantle, this system can influence a broad range of cognitive phenomena (sensory processing, attention, motivation, memory). The restrictive terminal distribution of individual MBN neurons (Bigl et al., 1982: Price and Stern, 1983; Nyakas et al., 1987) however, as compared to monoaminergic projections, may allow for a more discrete modulation of cortical activity.


Retention Interval Passive Avoidance Basal Forebrain Nucleus Basalis Lateral Septum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alheid G.F., and Heimer, L., 1988, New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorder: the striatopallidal, amygdaloid and corticopetal components of substantia innominata, Neuroscience. 27:1.PubMedCrossRefGoogle Scholar
  2. Allen, C.A., and Crawford, I.L., 1984, GABAergic agents in the medial septal nucleus affect hippocampal theta rhythm and acetylcholine utilization. Brain Res 322:261.PubMedCrossRefGoogle Scholar
  3. Alonso, A., and Kohier, C., 1984, A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain, J. comp. Neurol 225:327.PubMedCrossRefGoogle Scholar
  4. Altman, H.J., Crosland, R.D., Jenden, D.J., and Berman, R.F., 1985, Further characterization of the nature of the behavioral and neurochemical effects of lesions to the nucleus basalis of Meynert in the rat, Neurobiol. Aging. 6:125.Google Scholar
  5. Beatty, W.W., and Shavalia, D.A., 1980, Rat spatial memory: resistance to retroactive interference at long retention intervals, Anim. Learn. Behav.. 8:550.CrossRefGoogle Scholar
  6. Bigl, V., Woolf, N.J., and Butcher, L., 1982, Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. Bull.. 8:727.PubMedCrossRefGoogle Scholar
  7. Blaker, W.D., Peruzzi, G., and Costa, E., 1984, Behavioral and neurochemical differentiation of specific projections in the septal- hippocampal cholinergic pathway of the rat, Proc. Natl. Acad. Sci 81:1880.PubMedCrossRefGoogle Scholar
  8. Bostock, E., Gallagher, M., and King, R.A., 1988, Effects of opioid microinjections into the medial septal area on spatial memory in rats, Behavioral Neuroscience. 102:643.PubMedCrossRefGoogle Scholar
  9. Breese, G.R., Frye, G.D., McCown, T.J., and Mueller, R.A., 1984, Comparisons of CNS effects induced by TRH and bicuculline after microinjection into medial septum, substantia nigra and inferior colliculus: absence of support for a GABA antagonist action of TRH, Pharmacol. Biochem. Behav.. 21:145.CrossRefGoogle Scholar
  10. Brioni, J.D., Decker, M.W., Gamboa, L.P., Izquierdo, I., and McGaugh, J.L., 1990, Muscimol injections in the medial septum impair spatial learning, Brain Research. 522:227.PubMedCrossRefGoogle Scholar
  11. Chrobak, J.J. and Napier, T.C., 1989, Vehicle infusion into the basal forebrain produces task-specific cognitive deficits in the rat, Soc. Neurosci. Abs. 20.Google Scholar
  12. Chrobak, J.J., and Napier, T.C., 1990, Intraseptal administration of bicuculline produces working memory impairments in the rat, Behav. Neural Bio., in press.Google Scholar
  13. Chrobak, J.J., and Walsh, T.J., Dose and delay dependent working/episodic memory impairments following intraventricular administration of AF64A, submitted.Google Scholar
  14. Chrobak, J.J., Hanin, I., and Walsh, T.J., 1986, AF64A (ethylcholine aziridinium ion), a cholinergic neurotoxin, selectively impairs working memory in a multiple component T-maze task. Brain Research. 414:14.Google Scholar
  15. Chrobak, J.J. Hanin, I., Schmechel, D.E., and Walsh, T.J., 1988, AF64A- induced working memory impairment: behavioral, neurochemical and histological correlates. Brain Research. 463:107.PubMedCrossRefGoogle Scholar
  16. Chrobak, J.J. Spates, M., Stackman, R.W., and Walsh, T.J., 1989a, Hemicholinium-3 prevents the working memory impairments and the cholinergic hypofunction induced by ethylcholine aziridinium ion (AF64A), Brain Research. 504:269.PubMedCrossRefGoogle Scholar
  17. Chrobak, J.J., Stackman, R.W., and Walsh, T.J., 1989b, Intraseptal administration of muscimol produces dose-dependent memory impairments in the rat, Behav. Neural Bio.. 52:357.CrossRefGoogle Scholar
  18. Costa, E., Panula, P., Thompson, H.K., and Cheney, D.L., 1983, The transynaptic regulation of the septal-hippocampal cholinergic neurons. Life Sciences. 32:165.PubMedCrossRefGoogle Scholar
  19. Curti, D., and Marchbanks, R.M., 1984, Kinetics of irreversible inhibition of choline transport in synaptosomes by ethylcholine mustard aziridinium, J. Membrane Biol 82:259.CrossRefGoogle Scholar
  20. Dinopoulos, A., Parnavelas, J.G., Uylings, H.B.M., and Van Eden, C.G., 1988, Morphology of neurons in the basal forebrain nuclei of the rat: a golgi study, J. comp. Neurol 272:461.PubMedCrossRefGoogle Scholar
  21. Durkin, T., 1989, Central cholinergic pathways and learning and memory processes: presynaptic aspects. Comp. Biochem. Phsyiol., 93:273.CrossRefGoogle Scholar
  22. Elrod, K., and Buccafusco, J.J., 1988, Microinjection of vehicle into the nucleus basalis magnocellularis results in task-specific impairment of passive avoidance responding, Res. Comm. Psychol. Psychiat. Behav., 13:271.Google Scholar
  23. Emerich, D.F., and Walsh, T.J., 1990, Ganglioside AGF2 promotes task- specific recovery and attenuates the cholinergic hypofunction induced by AF64A, Brain Research. 527:299.PubMedCrossRefGoogle Scholar
  24. Fisher, R.S., Buchwald, N.A., Hull, C.D., and Levine, M.S., 1988, GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons, J. comp. Neurol 272:489.PubMedCrossRefGoogle Scholar
  25. Freund, T.F., and Antal, M., 1988, GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336:170.PubMedCrossRefGoogle Scholar
  26. Gaffan, D., 1985, Hippocampus: memory, habit and voluntary movement, Philos. Trans. R. Soc. London Ser. B. 308:87.CrossRefGoogle Scholar
  27. Gaykema, R.P.A., Luiten, P.G.M., Nyakas, C., and Traber, J., 1990, Cortical patterns of the medial septum-diagonal band complex, J. comp. Neurol 293:103.PubMedCrossRefGoogle Scholar
  28. Gower, A.J., Rousseau,D, Jamsin, P., Gobert, J., Hanin, I., and Wulfert, E., 1989, Behavioural and histological effects of low concentrations of intraventricular AF64A, Eur. J. Pharmacol 166:271.PubMedCrossRefGoogle Scholar
  29. Hagan, J.J., and Morris, R.G.M., 1988, The cholinergic hypothesis of memory: a review of animal experiments, in “Handbook of Psychopharmacology, Volume 20, Psychopharmacology of the Aging Nervous System,” L.L. Iversen, S.D. Iversen, and S.H. Snyder, eds., Plenum Press, New York, pp. 237–323.Google Scholar
  30. Hanin, I., 1990, AF64A-induced cholinergic hypofunction, in “Cholinergic Neurotransmission: Functional and Clinical Aspects,” S-M. Aquilonius and P. G. Gillberg, eds., Elsevier Science Publishers. B.V., Amsterdam, pp. 289–299.CrossRefGoogle Scholar
  31. Hanin, I., Fisher, A., Hortnagl, H., Leventer, S.M., Potter, P.E., and Walsh, T.J., 1987, Ethylcholine mustard aziridiniiun (AF64A; ECMA) and other potential cholinergic neuron-specific neurotoxins, in “Psychopharmacology- The Third Generation of Progress,” H.Y. Meitzer, ed.. Raven, New York, pp. 341–349.Google Scholar
  32. Hepler, D.J., Olton, D.S., Wenk, G.L., andCoyle, J.T., 1985, Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments, J. Neurosci 5:866.PubMedGoogle Scholar
  33. Ingham, C.A., Bolam, J.P., and Smith, A.D., 1988, GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons, J. comp. Neurol 273:263.PubMedCrossRefGoogle Scholar
  34. Jarrard, L.E., Kant, G.J., Meyerhoff, J. C., and Levy, A., 1984, Behavioral and neurochemical effects of intraventricular AF64A administration in rats, Pharmacol. Biochem. Behav.. 21:273.CrossRefGoogle Scholar
  35. Kafetzopoulos, E., Holzhauer, M.S., and Huston, J.P., 1986, Substance P injected into the region of the nucleus basalis magnocellularis facilitates performance of an inhibitory avoidance task, Psvchopharm 90:281.Google Scholar
  36. Kohier, C.,and Chan-Palay, V., 1983, Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area, Anat. Embryol., 167:53.CrossRefGoogle Scholar
  37. Kohier, C., Chan-Palay, V., and Wu, J-Y., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain, Anat. Embrvol.. 169:41.CrossRefGoogle Scholar
  38. Lamour, Y. and Epelbaum, J., 1988, Interactions between cholinergic and peptidergic systems in the cerebral cortex and hippocampus, Progress in Neurobiology. 31:109.PubMedCrossRefGoogle Scholar
  39. Leranth, C., and Frotscher, M., 1989, Organization of the septal region in the rat brain: cholinergic-gabaergic interconnections and the termination of hippocampo-septal fibers, J. comp. Neurol 289:304.PubMedCrossRefGoogle Scholar
  40. McGaugh, J.L., 1989, Dissociating learning and performance: drug and hormone enhancement of memory storage. Brain Res. Bull.. 23:339.PubMedCrossRefGoogle Scholar
  41. Meibach, R.C., and Siegal, A., 1977, Efferent connections of the hippocampal formation in the rat. Brain Res.. 124:197.PubMedCrossRefGoogle Scholar
  42. Mishkin, M., 1982, A memory system in the monkey, Philos. Trans. R. Soc. London Ser. B.. 298:85.CrossRefGoogle Scholar
  43. Mogenson, G.J., 1987, Limbic and motor integration, in “Progress in Psychobiology and Physiological Psychology, Volume 12,” J.N. Sprague and A.N. Epstein, eds.. Academic Press, New York, pp. 117- 170.Google Scholar
  44. Murray, C.L., and Fibiger, H.C., 1985, Learning and memory deficits after lesions of the nucleus basalis magnocellularis: reversal by physostigmine, Neuroscience. 14:1025.PubMedCrossRefGoogle Scholar
  45. Nagel, J.A., and Huston, J.P., 1988, Enhanced inhibitory avoidance learning produced by post-trial injections of substance P into the basal forebrain, Behav. Neural Biol.. 49:374.CrossRefGoogle Scholar
  46. Napier, T.C., and Marx, K., 1987, Enkephalin unilaterally microinjected into the ventral pallidal/nucleus basalis induces circling, Neurosci. Abstr., 13:445.Google Scholar
  47. Napier, T.C., An, D., Austin, M.C., and Kalivas, P.W., 1988, Opiates microinjected into the ventral pallidum/substantia innominata (VP/SI) produce locomotor responses that involve dopaminergic systems. Neurosci. Abstr.. 15:1173Google Scholar
  48. Nauta, W.J.H., Smith, G.P., Gaull, R.L.M., and Domesick, V.B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neurosci.. 3:385.CrossRefGoogle Scholar
  49. Nyakas, C., Luiten, P.G.M., Spencer, D.G., and Traber, J., 1987, Detailed projection patterns of septal and diagonal band efferents to the hippocampus in the rat with emphasis on innervation of CAl and dentate gyrus. Brain Res. Bull.. 18:533.PubMedCrossRefGoogle Scholar
  50. Olton, D.S., 1986, Hippocampal function and memory for temporal context in “The Hippocampus, Volume 4,” R.L. Isaacson and K. Pribram, eds.. Plenum Press, New York, pp. 316–348.Google Scholar
  51. Olton, D.S., and Wenk, G.L., 1987, Dementia: animal models of the cognitive impairments produced by degeneration of the basal forebrain cholinergic system, in “Psychopharmacology: The Third Generation of Progress,” H.Y. Meitzer (ed), Raven Press, New York, pp. 941–953.Google Scholar
  52. Pittel, Z., Fisher, A., and Heldman, E., 1987, Reversible and irreversible inhibition of high-affinity choline transport caused by ethylcholine aziridinium ion, J. Neurochem.. 49:468.PubMedCrossRefGoogle Scholar
  53. Potter, P.E., Tedford, C.E., Kindel, G.H., and Hanin, I., 1989, Inhibition of high affinity choline transport attenuates both cholinergic and non-cholinergic effects of ethylcholine aziridinium (AF64A), Brain Res., 13:283.Google Scholar
  54. Pope, C.N., Ho, B.T., and Wright, A.A., 1987, Neurochemical and behavioral effects of N-ethyl-acetylcholine aziridinium chloride in mice, Pharmacol. Biochem. Behav., 26:365.CrossRefGoogle Scholar
  55. Pribram, K., 1986, The hippocampal system and recombinant processing, in “The Hippocampus, Volume 4,” R.L. Isaacson and K. Pribram, eds., Plenum Press, New York, pp. 329–369.CrossRefGoogle Scholar
  56. Price, J.L., and Stern, R., 1983, Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain. Res.. 269:352.PubMedCrossRefGoogle Scholar
  57. Raisman, G., 1966, The connections of the septum. Brain. 9:317.CrossRefGoogle Scholar
  58. Robbins, T.W., Everitt, B.J., Marston, H.M., Wilkinson, J., Jones, G.H., and Page, K.J., 1989, Comparative effects of ibotenic acid- and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes, Behav. Brain Res.. 35:221.PubMedCrossRefGoogle Scholar
  59. Robinson, S.E., Hambrecht, K.L., and Lyeth, B.C., 1988, Basal forebrain carbachol injection reduces cortical acetylcholine turnover and disrupts memory, Brain Res 445:160.PubMedCrossRefGoogle Scholar
  60. Roitblat, H.L., 1982, The meaning of representations in animal memory, Behav. Brain Sci., 5:353.CrossRefGoogle Scholar
  61. Rye, D.B., Wainer, B.H., Mesulam, M-M, Mufson, E.J., and Saper, C.B., 1984, Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase, Neurosci.. 13:627.CrossRefGoogle Scholar
  62. Rylett, R.J., and Colhoun, E.H., 1980, Kinetic data on the inhibition of high-affinity choline transport into rat forebrain synaptosomes by choline-like compounds and nitrogen mustard analogues, J. Neurochem 34:713.PubMedCrossRefGoogle Scholar
  63. Saper, C.B., 1987, Diffuse cortical projection systems: anatomical organization and role in cortical function, in “Handbook of Physiology, Section 1, The Nervous System, Vol. 5, Part 1,” V.B. Mountcastle, F. Plum, and S.R. Geiger, eds., Am. Physiol. Soc., Bethesda, pp. 169–210.Google Scholar
  64. Sherry, D.F., and Schacter, D.L., 1987, The evolution of multiple memory systems. Psych. Rev.. 98:439.CrossRefGoogle Scholar
  65. Staubli, U., and Huston, J.P., 1980, Facilitation of learning post-trial injection of substance P into the medial septal nucleus, Behav. Br. Res.. 1:245.Google Scholar
  66. Swanson, L.W., and Kohier, C., 1986, Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat, J. Neurosci 6:3010.PubMedGoogle Scholar
  67. Swanson, L.W., and Cowan, W.M., 1979, The connections of the septal region in the rat, J. comp. Neurol 186:621.PubMedCrossRefGoogle Scholar
  68. Squire, L.R., 1987, “Memory and Brain,” Oxford Univ. Press, London and New York.Google Scholar
  69. Tedford, C.E., Lorens, S.A., Corey, J.C., Lokhorst, D., Kindel, G., Wulfert, E., and Hanin, I., Behavioral and neurochemical effects of AF64A in young and old fisher-344 male rats, in “Alzheimer’s and Parkinson’s Diseases: Basic and Therapeutic Strategies,” M. Yoshida, A. Fisher and T. Nagatsu, eds., Plenum Press, NY (in press).Google Scholar
  70. Thomas, G.J., and Gash, D.M., 1986, Differential effects of posterior septal lesions on dispositional and representational memory, Behav. Neurosci.. 100:712.PubMedCrossRefGoogle Scholar
  71. Tulving, E., 1983, “Elements of Episodic Memory”, Clarendon Press, Oxford, England.Google Scholar
  72. Uney J.B., and Marchbanks, R.M., 1987, Specificity of ethylcholine mustard aziridinivim as an irreversible inhibitor of choline transport in cholinergic and noncholinergic tissue, J. Neurochem 48:1673.PubMedCrossRefGoogle Scholar
  73. Van Hoesen, G.W., and Damasio, A.R., 1987, Neural correlates of cognitive impairment in Alzheimer’s disease, in “Handbook of Physiology, Section 1, The Nervous System, Vol. 5, Part 1,” V.B. Mountcastle, F. Plum, and Geiger, S.R., eds., Am. Physiol. Soc., Bethesda, pp. 871- 898.Google Scholar
  74. Walsh, T.J., and Chrobak, J.J., 1990, Animal models of Alzheimer’s disease: role of hippocampal cholinergic system in working memory, in “Current Topics in Animal Learning: Brain, Emotion & Cognition,” L. Dachowsky and C. Flaherty, eds., Erlbaum, Hillsdale, New Jersey, pp. 347–379.Google Scholar
  75. Walsh, T.J., Tilson, H.A., DeHaven, D.L., Mailman, R.B., Fisher, A., and Hanin, I., 1984, AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long- term passive avoidance and radial-arm maze deficits in the rat. Brain Research, 321:91–102.PubMedCrossRefGoogle Scholar
  76. Weiskrantz, L., 1982, Comparative aspects of studies of amnesia, Philos. Trans. R. Soc. London Ser. B. 298:97.CrossRefGoogle Scholar
  77. Wood, P.L., and McQuade, P., 1986, Substantia innominata - cortical cholinergic pathway: regulatory afferents, in “Dynamics of Cholinergic Function,” I. Hanin, ed.. Plenum Press, New York, pp. 999–1006.Google Scholar
  78. Zaborsky, L., Heimer, L., Eckenstein, F., and Leranth, C., 1986, GABA ergic input to cholinergic forebrain neurons: an ultrastructural study using retrograde tracing of HRP and double immuno labe ling, J comp. Neurol.. 250:282.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • James J. Chrobak
    • 1
  • T. Celeste Napier
    • 1
  • Israel Hanin
    • 1
  • Thomas J. Walsh
    • 2
  1. 1.Department of Pharmacology and Experimental Therapeutics, Stritch School of MedicineLoyola University ChicagoMaywoodUSA
  2. 2.Department of PsychologyRutgers UniversityNew BrunswickUSA

Personalised recommendations