Afferents to Basal Forebrain Cholinergic Projection Neurons: An Update

  • Lászlo Záborszky
  • William E. Cullinan
  • Alex Braun
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 295)


The basal forebrain cholinergic projection (BFC) system has been the focus of considerable attention as a result of evidence implicating it in a number of behavioral functions, including arousal, sensory processing, motivation, emotion, learning, and memory (Deutsch, 1983; Buzsaki et al., 1988; Richardson and DeLong, 1988; Durkin, 1989; Rolls 1989, Steriade and McCarley, 1990). Moreover, neuropathological changes in the BFC have been reported in a surprisingly large number of neurological diseases, including Alzheimer’s and Parkinson’s diseases (for ref. see Coyle et al., 1983; Mesulam and Geula, 1988; Arendt et al., 1989). BFC neurons in the rat are dispersed across a number of classically defined territories of the basal forebrain, as illustrated from a series of coronal sections in Fig. 1. However, using a computer graphic three-dimensional reconstruction technique (Schwaber et al., 1987) or manual reconstruction from camera lucida drawings (Fig. 2) it is evident that BFC neurons form a continuum, rather than being arranged as distinct nuclear groups.


Locus Coeruleus Cholinergic Neuron Globus Pallidus Basal Forebrain Nucleus Basalis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, E.D. and Jacobs, B.L., 1987, Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats, I. Acutely presented stressful and nonstressful stimuli, J. Neurosci., 7:2837–2842.PubMedGoogle Scholar
  2. Aggleton, J.P., Burton, M.J., and Passingham, R.E., 1980, Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta), Brain Res., 190:347–368.PubMedCrossRefGoogle Scholar
  3. Aggleton, J.P., Friedman, D.P., and Mishkin, M., 1987, A comparison between the connections of the amygdala and hippocampus with the basal forebrain in the macaque,Exp. Brain Res., 67:556–568.PubMedCrossRefGoogle Scholar
  4. Alexander, G.E., DeLong, M.R., and Strick, P.L., 1986, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Ann. Rev. Neurosci., 9:357–381.PubMedCrossRefGoogle Scholar
  5. Alheid, G.F. and Heimer, L., 1988, New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata, Neurosci., 27:1–39.CrossRefGoogle Scholar
  6. Allen, C.N. and Crawford, I.L., 1984, GABAergic agents in the medial septal nucleus affect hippocampal theta rhythm and acetylcholine utilization, Brain Res., 322:261–267.PubMedCrossRefGoogle Scholar
  7. Allen, J.M., Ferrier, I.N., Roberts, G.W., Cross, A.J., Adrian, T.E., Crow, T.J., and Bloom, S.R., 1984, Elevation of neuropeptide Y (NPY) in substantia innominata in Alzheimer’s type dementia, J. Neurol. Sci., 64:325–331.PubMedCrossRefGoogle Scholar
  8. Alonso, J.R. and Frotscher, M., 1989, Hippocampo-septal fibers terminate on identified spiny neurons in the lateral septum: a combined Golgi/electron-microscopic and degeneration study in the rat. Cell Tiss. Res., 258:243–246.CrossRefGoogle Scholar
  9. Amaral, D.G., 1987, Memory: anatomical organization of candidate brain regions, in: “Handbook of Physiology, Section I, The Nervous System, Vol. V.”, V.B. Mountcastle, F. Plum, and S.R. Geiger, eds., American Physiological Society, Maryland, pp. 211–294.Google Scholar
  10. Amaral, D.G. and Kurz, J., 1985, An analysis of the origins of the cholinergic and non-cholinergic septal projections to the hippocampal formation in the rat, J.Comp . Neurol., 240:37–59.PubMedCrossRefGoogle Scholar
  11. Arai, H., Moroji, T., Kosaka, K., and lizuka, R., 1986, Extrahypophyseal distribution of a-melanocyte stimulating hormone (a-MSH)-like immunoreactivity in postmortem brains from normal subjects and Alzheimer-type dementia patients, Brain Res., 377:305–310.PubMedCrossRefGoogle Scholar
  12. Arendt, T., Bigl, V., Tennstedt, A., and Arendt, A., 1985, Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease, Neurosci., 14:1–14.CrossRefGoogle Scholar
  13. Arendt, T., Allen, Y., Marchbanks, R.M., Schugens, M.M., Sinden, J., Lantos, P.L., and Gray, J.A., 1989, Cholinergic system and memory in the rat: effects of chronic ethanol, embryonic basal forebrain brain transplants and excitotoxic lesions of cholinergic basal forebrain projection system, Neurosci., 33:435–462.CrossRefGoogle Scholar
  14. Armstrong, D.M., 1986, Ultrastructural characterization of choline acteylytransferase-containing neurons in the basal forebrain: evidence for a cholinergic innervation of intracerebral blood vessels, J.Comp . Neurol., 250:81–92.PubMedCrossRefGoogle Scholar
  15. Armstrong, D.M., Saper, C.B., Levey, A.I., Wainer, B.H., and Terry, R.D., 1983, Distribution of cholinergic neurons in the rat brain demonstrated by immunohistochemical localization of choline acetyltransferase, J.Comp.Neurol., 216:53–68.PubMedCrossRefGoogle Scholar
  16. Arnault, P. and Roger, M., 1987, The connections of the peripeduncular area studied by retrograde and anterograde transport in the rat, J.Comp . Neurol., 258:463–476.PubMedCrossRefGoogle Scholar
  17. Ashe, J.H., McKenna, T.M., and Weinberger, N.M., 1989, Cholinergic modulation of frequency receptive fields in auditory cortex, II, Frequency-specific effects of acetylcholinesterase provide evidence for a modulatory action of endogenous ACh, Synapse. 4:44–54.PubMedCrossRefGoogle Scholar
  18. Assaf, S.Y. and Miller, J.J., 1978, The role of a raphe serotonin system in the control of septal unit activity and hippocampal desynchronization, Neurosci., 3:539–550.CrossRefGoogle Scholar
  19. Aston-Jones, G. and Bloom, F.E., 1981, Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli, J. Neurosci., 1:887–900.PubMedGoogle Scholar
  20. Aston-Jones, G., Ennis, M., Pieribone, V.A., Nickell, W.T., and Shipley, M.T., 1986, The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science. 234:734–737.PubMedCrossRefGoogle Scholar
  21. Azmitia, E.G. and Segal, M., 1978, An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat, J.Comp.Neurol., 179:641–688.PubMedCrossRefGoogle Scholar
  22. Bartus, R.T., Dean, R.L., Beer, B. and Lippa, A.S., 1982, The cholinergic hypothesis of geriatric memory dysfunction. Science, 217:408–417.PubMedCrossRefGoogle Scholar
  23. Baud, P., Mayo, W., LeMoal, M., and Simon, H., 1988, Locomotor hyperactivity in the rat after infusion of muscimol and [D-Ala] Met-enkephalin into the nucleus basalis magnocellularis: possible interaction with cortical cholinergic projections, Brain Res., 452:203–211.PubMedCrossRefGoogle Scholar
  24. Beach, T.G., Tago, H., and McGeer, E.G., 1987, Light microscopic evidence for a substance P-containing innervation of the human nucleus basalis of Meynert, Brain Res., 408:251–257.PubMedCrossRefGoogle Scholar
  25. Beckstead, R.M., 1979, An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat, J.Comp.Neurol., 184:43–62.PubMedCrossRefGoogle Scholar
  26. Beckstead, R.M., 1984, The thalamostriatal projection in the cat, J.Comp.Neurol., 223:313–346.PubMedCrossRefGoogle Scholar
  27. Berk, M.L. and Finkelstein, J.A., 1982, Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res. Bull., 8:511–526.PubMedCrossRefGoogle Scholar
  28. Bialowas, J. and Frotscher, M., 1987, Choline acetyltransferase-immunoreactive neurons and terminals in the rat septal complex: a combined light and electron microscopic study, J.Comp . Neurol., 259:298–307.PubMedCrossRefGoogle Scholar
  29. Björklund, A. and Lindvall, O., 1986, Catecholaminergic brainstem regulatory systems, in: “Handbook of Physiologys: The Nervous System”, V.B. Mountcastle, F.E. Bloom, and S.R. Geiger, eds., American Physiological Society, Maryland, pp. 155–235.Google Scholar
  30. Blaker, W.D., 1985, GABAergic control of the cholinergic projections to the frontal cortex is not tonic, Brain Res., 325:389–390.PubMedCrossRefGoogle Scholar
  31. Blaker, W.D., Cheney, D.L., and Costa, E., 1986, GABA, vs. GABA-modulation of septal-hippcampal interconnections. Adv. Behav. Biol., 30:953–961.Google Scholar
  32. Blaker, W.D., Peruzzi, G., and Costa, E., 1984, Behavioral and neurochemical differentiation of specific projections in the septal-hippocampal cholinergic pathway of the rat, Proc. Natl. Acad. Sci.USA. 81:1880–1882.PubMedCrossRefGoogle Scholar
  33. Block, C.H. and Schwartzbaum, J.S., 1983, Ascending efferent projections of the gustatory parabrachial nuclei in the rabbit, 1983, Brain Res., 259:1–9.PubMedCrossRefGoogle Scholar
  34. Bolam, J.P., Ingham, C.A., Izzo, P.N., Levey, A.I., Rye, D.B., Smith, A.D., and Wainer, B.H., 1986, Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain; a double immunocytochemical study in the rat. Brain Res., 397:279–289.PubMedCrossRefGoogle Scholar
  35. Brauer, K., Schober, W., Werner, L., Winkelman, E., Lungwitz, W., and Hajdu, F., 1988, Neurons in the basal forebrain complex of the rat: a Golgi study, J.Hirnforsch., 29:43–71.PubMedGoogle Scholar
  36. Brody, H., 1976, An examination of the cerebral cortex and brain stem in aging, in: “Neurobiology of Aging”, R.D. Terry and S. Gershon, eds., Raven Press, New York, pp. 177–182.Google Scholar
  37. Brownstein, M., Saavedra, J.M., and Palkovits, M., 1974, Norepinephrine and dopamine in the limbic system of the rat. Brain Res., 79:431–436.PubMedCrossRefGoogle Scholar
  38. Butcher, L.L. and Semba, K., 1989, Reassessing the cholinergic basal forebrain; nomenclature, schemata, and concepts, TINS, 12:483–485.PubMedGoogle Scholar
  39. Buzsaki, G., Bickford, R.G., Ponomareff, G., Thai, L.J., Mandel, R., and Gage, F.H., 1988, Nucleus basalis and thalamic control of neocortical activity in the freely moving rat, J. Neurosci., 8:4007–4026.PubMedGoogle Scholar
  40. Byrum, C.E. and Guyenet, P.G., 1987, Afferent and efferent connections of A5 noradrenergic cell group in the rat, J.Comp.Neurol., 261:529–542.PubMedCrossRefGoogle Scholar
  41. Carlsen, J., Záborszky, L., and Heimer, L., 1985, Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study, J.Comp . Neurol., 234:155–167.PubMedCrossRefGoogle Scholar
  42. Carlsson, A., 1987, Brain neurotransmitters in aging and dementia: similar changes across diagnostic dementia groups. Gerontology. 33:159–167.PubMedCrossRefGoogle Scholar
  43. Carnes, K.M., Fuller, T.A., and Price, J.L., 1990, Sources of presumptive glutamaergic/aspartatergic afferents to the magnocellular basal forebrain in the rat, J.Comp.Neurol., 302:824–852.PubMedCrossRefGoogle Scholar
  44. Casamenti, F., Deffenu, G., Abbamondi, A.L., and Pepeu, G., 1986, Changes in cortical acetylcholine output induced by modulation of the nucleus basalis. Brain Res.Bull., 16:689–695.PubMedCrossRefGoogle Scholar
  45. Cechetto, D.F. and Saper, C.B., 1987, Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat, J.Comp.Neurol., 262:27–45.PubMedCrossRefGoogle Scholar
  46. Cederbaum, J.M. and Aghajanian, G.K., 1978, Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique, J. Comp., Neurol., 178:1–16.CrossRefGoogle Scholar
  47. Celesia, G.G., and Jasper, H.H., 1966, Acetylcholine released from cerebral cortex in relation to state of activation. Neurology. 16:1053–1064.PubMedGoogle Scholar
  48. Chang, H.T., Penny, G.R., andKitai, S.T., 1987, Enkephalinergic-cholinergic interaction in the rat globus pallidus: a pre-embedding double-labeling immunocytochemistry study. Brain Res., 426:197–203.PubMedCrossRefGoogle Scholar
  49. Chan-Palay, V., 1988, Neurons with galanin innervate cholinergic cells in the human basal forebrain and galanin and acetylcholine coexist.Brain Res.Bull., 21:465–472.PubMedCrossRefGoogle Scholar
  50. Chan-Palay, V. and Asan, E., 1989a, Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression, J.Comp.Neurol., 287:357–372.PubMedCrossRefGoogle Scholar
  51. Chan-Palay, V. and Asan, E., 1989b, Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression, J.Comp . Neurol., 287:373–392.PubMedCrossRefGoogle Scholar
  52. Christie, M.J., Summers, R.J., Stephenson, J.A., Cook, C.J., and Beart, P.M., 1987, Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing d[H] GABA, Neurosci., 22:425–439.CrossRefGoogle Scholar
  53. Chrobak, J.J., Stackman, R.W., and Walsh, T.J., 1989, Intraseptal administration of muscimol produces dose-dependent memory impairments in the rat, BehavE. Neural Biol., 52:357–369.CrossRefGoogle Scholar
  54. Coben, L.A., Danziger, W.L., and Berg, L., 1983, Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type, Electroenceph. Clin. Neurophys., 55:372–380.CrossRefGoogle Scholar
  55. Collier, B., and Mitchell, J.F., 1967, The central release of acetylcholine during consciousness and after brain lesions, J. Physiol., 188:83–98.PubMedGoogle Scholar
  56. Conrad, L.C.A. and Pfaff, D.W., 1976a, Efferents from medial basal forebrain and hypothalamus in the rat, I. An autoradiographic study of the medial preoptic area, J.Comp.Neurol., 169:185–220.PubMedCrossRefGoogle Scholar
  57. Conrad, L.C.A. and Pfaff, D.W., 1976b, Efferents from medial basal forebrain and hypothalamus, II. An autoradiographic study of the anterior hypothalamic area, J.Comp.Neurol., 169:221–262.PubMedCrossRefGoogle Scholar
  58. Constantinidis, J., Bouras, C., and Vallet, P.G., 1988, Neuropeptides in Alzheimer’s and in Parkinson’s disease, Mt. Sinai J. Med., 55:102–115.PubMedGoogle Scholar
  59. Costa, E., Panula, P., Thompson, H.K., and Cheney, D.L., 1983, The transsynaptic regulation of the septal-hippocampal cholinergic neurons. Life Sci., 32:165–179.PubMedCrossRefGoogle Scholar
  60. Coyle, J.T., Price, D.L., and DeLong, M.R., 1983, Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science. 219:1184–1190.PubMedCrossRefGoogle Scholar
  61. Crawley, J.N. and Wenk, G.L., 1989, Co-existence of galanin and acetylcholine: is galanin involved in memory processes and dementia? TINS, 12:278–282.PubMedGoogle Scholar
  62. Cullinan, W.E. and Záborszky, L., 1991, Organization of ascending hypothalamic projections to the rostral forebrain with special reference to the innervation of cholinergic projection neurons, J.Comp . Neurol., (in press).Google Scholar
  63. Dahlström, A. and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system, I, Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand., 62(Suppl. 232):1–55.Google Scholar
  64. Decker, M.W., 1987, The effects of aging on hippocampal and cortical projections of the forebrain cholinergic system. Brain Res.Rev., 12:423–438.CrossRefGoogle Scholar
  65. Decker, M.W. and Gallagher, M., 1987, Scopolamine-disruption of radial arm maze performance: modification by noradrenergic depletion. Brain Res., 417:59–69.PubMedCrossRefGoogle Scholar
  66. Decker, M.W., Gill, T.M., and McGaugh, J.L., 1990, Concurrent muscarinic and ß-adrenergic blockage in rats impairs place-learning in a water maze and retention of inhibitory avoidance. Brain Res., 513:81–85.PubMedCrossRefGoogle Scholar
  67. Decker, M.W. and McGaugh, J.L., 1989, Effects of concurrent manipulations of cholinergic and noradrenergic function on learning and retention in mice, Brain Res., 477:29–37.PubMedCrossRefGoogle Scholar
  68. de Olmos, J.S., 1990, The amygdala, in: “The Human Nervous System,” G. Paxinos, ed., Academic Press, New York, pp 583–710.Google Scholar
  69. de Olmos, J.S., Alheid, G.F., and Beltramino, C.A., 1985, Amygdala, in: “The Rat Nervous System”, G. Paxinos, ed., Academic Press, New York, pp. 223–334.Google Scholar
  70. Détari, L. and Vanderwolf, C.H., 1987, Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats, Brain Res., 437:1–8.PubMedCrossRefGoogle Scholar
  71. Deutsch, J.A., ed., 1983, The cholinergic synapse and the site of memory, in: “The Physiological Basis of Memory”, J.A. Deutsch, ed., Academic Press, New York, pp. 367–385.Google Scholar
  72. Dinopoulous, A., Parnavelas, J.G., and Eckenstein, F., 1986, Morphological characterization of cholinergic neurons in the horizontal limb of the diagonal band of Broca in the basal forebrain of the rat, J. Neurocyto., 15:619–628.CrossRefGoogle Scholar
  73. Dinopoulous, A., Parnavelas, J.G., Uylings, H.B.M., and Van Eden, C.G., 1988, Morphology of neurons in the basal forebrain nuclei of the rat; a Golgi study, J.Comp.Neurol., 272:461–474.CrossRefGoogle Scholar
  74. Donoghue, J.P. and Herkenham, M., 1986, Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat, Brain Res., 365:397–403.PubMedCrossRefGoogle Scholar
  75. Drachman, D.G. and Leavitt, J., 1974, Human memory and the cholinergic system. Arch Neurol., 30:113–121.PubMedCrossRefGoogle Scholar
  76. Dudar, J.D., 1977, The role of the septal nuclei in the release of acetylcholine from the rabbit cerebral cortex and dorsal hippocampus and the effect of atropine, Brain Res., 129:237–246.PubMedCrossRefGoogle Scholar
  77. Durkin, T., 1989, Central cholinergic pathways and learning and memory processes: presynaptic aspects, Comp.Biochem. Physiol., 93A:273–280.CrossRefGoogle Scholar
  78. Eberhart, J.A., Morrell, J.I., Krieger, M.S., and Pfaff, D.W., 1985, An autoradiographic study of projections ascending from the midbrain central gray, and from the region lateral to it, in the rat, J.Comp . Neurol., 241:285–310.PubMedCrossRefGoogle Scholar
  79. Edwards, S.B. and de Olmos, J., 1976, Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis, J.Comp.Neurol., 165:417–432.PubMedCrossRefGoogle Scholar
  80. Everitt, B.J., Sirkia, T.E., Roberts, A.C., Jones, G.H., andRobbins, T.W., 1988, Distribution and some projections of cholinergic neurons in the brain of the common marmoset, Callithrix Jacchus,J.Comp . Neurol., 271:533–558.PubMedCrossRefGoogle Scholar
  81. Fallon, J.H. and Moore, R.Y., 1978, Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum, J.Comp.Neurol., 180:545–580.PubMedCrossRefGoogle Scholar
  82. Faull, R.L.M., Nauta, W.J.H., and Domesick, V.B., 1986, The visual corticostriato-nigral pathway in the rat, Neurosci., 19:1119–1132.CrossRefGoogle Scholar
  83. Ferrier, L.N., Cross, A.J., Johnson, J.A., Roberts, G.W., Crow, T.J., Corsellis, J.A.N., Lee, Y.C., O’Shaughnessy, Adrian, T.E., McGregor, G.P., Baracesb-Hamilton, A.J., and Bloom, S.R., 1983, Neuropeptides in Alzheimer type dementia, J. Neurol. Sci., 62:159–170.PubMedCrossRefGoogle Scholar
  84. Fisher, R.S., Buchwald, N.A., Hull, C.D., and Levine, M.S., 1988, GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons, J.Comp.Neurol., 272:489–502.PubMedCrossRefGoogle Scholar
  85. Fisher, W., Gage, F.H., and Björklund, A., 1989, Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Euro. J. Neurosci., 1:34–45.CrossRefGoogle Scholar
  86. Fisone, G., Wu, C.F., Console, S., Nordström, O., Brynne, N., Bartfai, T., Melander, T., and Hökfelt, T., 1987, Galanin inhibits acetylcholine release in the ventral hippocampus of the rat: histochemical, autoradiographic, in vivo, and in vitro studies, Proc. Natl. Acad. Sci.USA. 84:7339–7343.PubMedCrossRefGoogle Scholar
  87. Flood, J.F., Hernandez, E.N., and Morley, J.E., 1987, Modulation of memory processing by neuropeptide Y, Brain Res., 421:280–290.PubMedCrossRefGoogle Scholar
  88. Flood, J.F., Baker, M.L., Hernandez, E.N., and Morley, J.E., 1989, Modulation of memory processing by neuropeptide Y varies with brain injection site. Brain Res., 503:73–82.PubMedCrossRefGoogle Scholar
  89. Fonnum, F., Storm-Mathisen, J., and Divac, I., 1981, Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain, Neurosci., 6:863–873.CrossRefGoogle Scholar
  90. Fonnum, F. and Walaas, I., 1978, The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in hippocampus and septum, J. Neurochem., 31:1173–1181.PubMedCrossRefGoogle Scholar
  91. Foote, S.L., Bloom, F.E., and Aston-Jones, G., 1983, Nucleus locus coerleus: new evidence of anatomical and physiological specificity, Physiol. Rev., 63:844–914.PubMedGoogle Scholar
  92. Forno, L.S., 1978, The locus coeruleus in Alzheimer’s disease, J. Neuropath. Exp. Neurol., 37:614.CrossRefGoogle Scholar
  93. Francis, P.T., Carl, R., Pearson, A., Lowe, S.L., Neal, J.W., Stephens, P.H., Powell, T.P.S., and Bowen, D.M., 1987, The dementia of Alzheimer’s disease; an update, J. Neurol. Neurosurg. Psychiatr., 50:242–243.PubMedCrossRefGoogle Scholar
  94. Freund, T.F. and Antal, M., 1988, GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus, Nature. 366:170–173.CrossRefGoogle Scholar
  95. Fuller, T.A., Russchen, F.T., and Price, J.L., 1987, Sources of presumptive glutamatergic/aspartergic afferents to the rat ventral striatopallidal region, J.Comp.Neurol., 258:317–338.PubMedCrossRefGoogle Scholar
  96. Fulwiler, C.E. and Saper C.B., 1984, Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. Rev., 7:229–259.CrossRefGoogle Scholar
  97. Fuster, J.M., 1989, “The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe”, Raven Press, New York.Google Scholar
  98. Fuster, J.M., Bauer, R.H., and Jervey, J.P. 1982, Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks, Exp. Neurol., 77:679–694.PubMedCrossRefGoogle Scholar
  99. Gabbott, P.L.A. and Somogyi, T., 1984, The single section Golgi-impregnation procedure: methodological description, J. Neurosci. Meth., 11:221–230.CrossRefGoogle Scholar
  100. Gaffan, D., and Harrison, S., 1987, Amygdalectomy and disconnection in visual learning for auditory secondary reinforcement by monkeys, J. Neurosci., 7:2285–2292.PubMedGoogle Scholar
  101. Galey, D., Durkin, T., Sifakis, G., Kempf, E., and Jaffard, R., 1985, Facilitation of spontaneous and learned spatial behaviours following 6-hydroxydopamine lesions of the lateral septum: a cholinergic hypothesis, Brain Res., 340:171–174.PubMedCrossRefGoogle Scholar
  102. Gaykema, R.P.A., Luiten, P.G.M., Nyakas, C., and Traber, J., 1990, Cortical projection patterns of the medial septum-diagonal band complex, J.Comp . Neurol., 293:103–124.PubMedCrossRefGoogle Scholar
  103. Gerfen, C.R., 1984, The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output system. Nature, 311:461–464.PubMedCrossRefGoogle Scholar
  104. Gerfen, C.R., 1985, The neostriatal mosaic, I. Compartmental organization of projections from the striatum to the substantia nigra in the rat, J.Comp.Neurol., 236:454–476.PubMedCrossRefGoogle Scholar
  105. Gerfen, C.R., 1989, The neostriatal mosaic: a striatal patch-matrix organization is related to cortical lamination. Science. 246:385–388.PubMedCrossRefGoogle Scholar
  106. Gilad, G.M., Gilad, V.H., and Rabey, J.M., 1986, Dopaminergic modulation of the septo-hippocampal cholinergic system activity under stress, 1986, Life Sci., 39:2387–2393.PubMedCrossRefGoogle Scholar
  107. Giuffrida, R. and Rustioni, A., 1988, Glutamate and aspartate immunoreactivity in corticothalamic neurons of rat, in: “Cellular Thalamic Mechanisms”, M. Bentivoglio and R. Spreafico, eds., Elsevier, Amsterdam, pp. 311–320.Google Scholar
  108. Goldman-Rakic, P.S., 1987, Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, in: “Handbook of Physiology: The Nervous System”, Vol. V., Part 1, V.B. Mountcastle, F. Plum and S.R. Geiger, eds., American Physiol. Society, Maryland, pp. 373–417.Google Scholar
  109. Goldman-Rakic, P.S. and Selemon, L.D., 1986, Topography of corticostriatal projections in nonhuman primates and implications for functional parcellation of the neostriatum, in: “Cerebral Cortex”, (Vol. 5), E.G. Jones and A. Peters, eds., Plenum Press, New York, pp. 447–466.Google Scholar
  110. Greene, R.W., Gerber, U., and McCarley, R.W., 1989, Cholinergic activation of medial pontine reticular formation neurons in vitro, Brain Res., 476:154–159.PubMedCrossRefGoogle Scholar
  111. Griffith, W.H., 1988, Membrane properties of cell types within guinea pig basal forebrain nuclei in vitro,J. Neurophysiol., 59:1590–1612.PubMedGoogle Scholar
  112. Griffith, W.H. and Matthews, R.T., 1986, Electrophysiology of AChE positive neurons in basal forebrain slices, Neurosci. Lett., 71:169–174.PubMedCrossRefGoogle Scholar
  113. Groenewegen, H.J., Berendse, H.W., Meredith, G.E., Haber, S.N., Voorn, P., Wolters, J.G., and Lohman, A.H.M., 1990, Functional anatomy of the ventral, limbic system-innervated striatum, in: “The Mesolimbic Dopamine System: From Motivation to Action”, P. Willner and J. Scheel-Kriiger, eds., John Wiley and Sons, Ltd.Google Scholar
  114. Groenewegen, H.J., Vermeulen-Van der Zee, E., te Kortshot, A., and Witter, M.P., 1987, Organization of the projections from the subiculum to the ventral striatum in the rat: a study using anterograde transport of Phaseolus vulgaris leucoagglutinin, Neurosci., 23:103–120.CrossRefGoogle Scholar
  115. Grove, E.A., 1988, Neural associations of the substantia innominata in the rat: afferent connections, J.Comp.Neurol., 277:315–346.PubMedCrossRefGoogle Scholar
  116. Grove, E.A., Domesick, V.B., and Nauta, W.J., 1986, Light microscopic evidence of striatal input to intrapallidal neurons of cholinergic cell group Ch4 in the rat: a study employing the anterograde tracerPhaseolus vulgaris leucoagglutinin (PHA-L), Brain Res., 367:379–384.PubMedCrossRefGoogle Scholar
  117. Guyenet, P.G. and Byrum, C.E., 1985, Comparative effects of sciatic nerve stimulation, blood pressure, and morphine on the activity of A5 and A6 pontine noradrenergic neurons, Brain Res., 327:191–201.PubMedCrossRefGoogle Scholar
  118. Haber, S.N., Groenewegen, H.J., Grove, E.A., and Nauta, W.J.H., 1985, Efferent connections of the ventral pallidum: evidence of a dual striato-pallidofugal pathway, J.Comp.Neurol., 235:322–335.PubMedCrossRefGoogle Scholar
  119. Haber, S.N., Lind, E., Klein, C., and Groenewegen, H.J., 1990, Topographie organization of the ventral striatal efferent projections in the Rhesus monkey: an anterograde tracing study, J.Comp . Neurol., 293:282–298.PubMedCrossRefGoogle Scholar
  120. Haber, S.N. and Nauta, W.J.H., 1983, Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry, Neurosci., 9:245–260.CrossRefGoogle Scholar
  121. Hallanger, A.E., Price, S.D., Steininger, T., and Wainer, B.H., 1988, Mesopontine tegmental projections to the nucleus basalis of Meynert: an ultrastruetural study, Soc. Neurosci. Abstr., 14:1184.Google Scholar
  122. Hallanger, A.E. and Wainer, B.H., 1988, Ascending projections from the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat, J.Comp.Neurol., 274:483–515.PubMedCrossRefGoogle Scholar
  123. Haring, J.H. and Wang, R.Y., 1986, The identification of some sources of afferent input to the rat nucleus basalis magnocellularis by retrograde transport of horseradish peroxidase. Brain Res., 366:152–158.PubMedCrossRefGoogle Scholar
  124. Haroutunian, V., Kanof, P.D., and Davis, K.L., 1989, Interactions of forebrain cholinergic and somatostatinergic systems in the rat, Brain Res., 496:98–104.PubMedCrossRefGoogle Scholar
  125. Haroutunian, V., Kanof, P.D., Tsuboyama, G., and Davis, K.L., 1990, Restoration of cholinomimetic activity by Clonidine in cholinergic plus noradrenergic lesioned rats. Brain Res., 507:261–266.PubMedCrossRefGoogle Scholar
  126. Haroutunian, V., Mantin, R., Campbell, G.A., Tsuboyama, G.K., and Davis, K.L., 1987, Cysteamine-induced depletion of central somatostatin-like immunoreactivity: effects on behavior, learning, memory and brain neurochemistry. Brain Res., 403:234–242.PubMedCrossRefGoogle Scholar
  127. Heilman, K.M., Watson, R.T., Valenstein, E., Goldberg, M.E., 1987, Attention; behavior and neural mechanisms, in: “Handbook of Physiology: The Nervous System”, Vol. V., Part 1, V.B. Mountcastle, F. Plum, and Geiger, S.R., eds., American Physiol. Society, Maryland, pp. 461–481.Google Scholar
  128. Heimer, L. and Alheid, G.F., 1991, Piecing together the puzzle of basal forebrain anatomy, in: “The Basal Forebrain: Anatomy to Function”, T.C. Napier, P.W. Kalivas, and I. Hanin, eds., Plenum Press, New York (in press).Google Scholar
  129. Heimer, L., de Olmos, J.S., Alheid, G.F., and Záborszky, L., 1991a, “Perestroika” in the basal forebrain: opening the borders between neurology and psychiatry, Progr. Brain Res., Vol 87, (in press).Google Scholar
  130. Heimer, L., Zahm, D.S., Churchill, L., Kalivas, P.W., and Wohltmann, C., 1991b, Specificity in the projection patterns of accumbal core and shell in the rat, Neurosci., (in press).Google Scholar
  131. Heimer, L. and Wilson, R.D., 1975, The subcortical projections of allocortex: similarities in the neural associations of the hippocampus, the piriform cortex and the neocortex, in: “Golgi Centennial S3nnposium Proceedings,” M. Santini, ed., Raven Press, New York, pp. 177–193.Google Scholar
  132. Herbert, H., Moga, M.M., and Saper, C.B., 1990, Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat, J. Comp.Neurol., 293:540–580.PubMedCrossRefGoogle Scholar
  133. Herkenham, M., 1978, The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat, J.Comp . Neurol., 177:589–610.PubMedCrossRefGoogle Scholar
  134. Herkenham, M., 1979, The afferent and efferent connections of the ventromedial thalamic nucleus in the rat, J.Comp . Neurol., 183:487–518.PubMedCrossRefGoogle Scholar
  135. Ichiyama, Y., Arai, H., Kosaka, K., and Izuka, R., 1986, Morphological and biochemical changes in the cholinergic and monaminergic systems in Alzheimer-type dementia. Acta Neuropathol., 70:112–116.CrossRefGoogle Scholar
  136. Ingham, C.A., Bolam, J.P., and Smith, A.D., 1988, GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons, J.Comp . Neurol., 273:263–282.PubMedCrossRefGoogle Scholar
  137. Ingham, C.A., Bolam, J.P., Wainer, B.H., and Smith, A.D., 1985, A correlated light and electron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat, J.Comp.Neurol., 239:176–192.PubMedCrossRefGoogle Scholar
  138. Inoue, M., Oomura, Y., Aou, S., Nishino, H., and Sikdar, S.K., 1985, Reward related neuronal activity in monkey dorsolateral prefrontal cortex during feeding behavior, Brain Res., 326:307–312.PubMedCrossRefGoogle Scholar
  139. Irle, E. and Markowitsch, H.J., 1986, Afferent connections of the substantia innominata/basal nucleus of Meynert in carnivores and primates, J.Hirnforsch., 27:343–367.PubMedGoogle Scholar
  140. Jacobs, B.L., 1987, Brain monoaminergic unit activity in behaving animals. Prog. Psvchobiol., Physiol., Psychol., 12:171–206.Google Scholar
  141. Jacobs, B.L., Fornal, C.A., and Wilkinson, L.O., 1990, Neurophysiological and neurochemical studies of brain serotonergic neurons in behaving animals, Ann. NY. Acad. Sci., 600:260–271.PubMedCrossRefGoogle Scholar
  142. Jasper, H.H. and Tessier, J., 1971, Acetylcholine liberations from cerebral cortex during paradoxical (REM) sleep. Science. 172:601–602.PubMedCrossRefGoogle Scholar
  143. Jellinger, K., 1990, New developments in the pathology of Parkinson’s disease, in: “Advances in Neurology”, Vol. 53, M.B. Streifler, A.D. Kprczyn, E. Melamed and M.B.H. Youdim, eds., Raven Press, New York, pp. 1–16.Google Scholar
  144. Jones, E.G., Burton, H., Saper, C.B., and Swanson, L.W., 1976, Midbrain, diencephalic, and cortical relationships of the basal nucleus of Meynert and associated structures in primates, J.Comp.Neurol., 167:385–420.PubMedCrossRefGoogle Scholar
  145. Jones, B.E. and Cuello, A.C., 1989, Afferents to the basal forebrain cholinergic cell area from the pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons, Neurosci., 31:37–61.CrossRefGoogle Scholar
  146. Jones, B. and Mishkin, M., 1972, Limbic lesions and the problem of stimulus-reinforcement associations, Exp. Neurol., 36:362–377.PubMedCrossRefGoogle Scholar
  147. Jones, B.E. and Moore, R.Y., 1977, Ascending projections of the locus coeruleus in the rat, II. Autoradiographic study. Brain Res., 127:23–53.CrossRefGoogle Scholar
  148. Jones, B.E. and Yang, T.Z., 1985, The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat, J.Comp . Neurol., 242:56–92.PubMedCrossRefGoogle Scholar
  149. Jones, E.G. and Powell, T.P.S., 1970, An experimental study of converging sensory pathways within the cerebral cortex of the monkey. Brain. 93:793–820.PubMedCrossRefGoogle Scholar
  150. Juliano, S.L., Ma, W., Bear, M.F., and Eslin, D., 1990, Cholinergic manipulation alters stimulus-evoked metabolic activity in cat somatosensory cortex, J.Comp . Neurol., 297:106–120.PubMedCrossRefGoogle Scholar
  151. Kafetzopoulos, E., Holzhauer, M.S., and Huston, J.P., 1986, Substance P injected into the region of the nucleus basalis magnocellularis facilitates performance of an inhibitory avoidance task, Psychopharm., 90:281–283.CrossRefGoogle Scholar
  152. Kanai, T., and Szerb, J.C., 1965, Mesencephalic reticular activating system and cortical acetylcholine output, Nature. 205:80–82.PubMedCrossRefGoogle Scholar
  153. Kelley, A.E. and Domesick, V.B., 1982, The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde and retrograde-horseradish peroxidase study, Neurosci., 7:2321–2335.CrossRefGoogle Scholar
  154. Kelley, A.E., Domesick, V.B., and Nauta, W.J.H., 1982, The amygdalostriatal projection in the rat: an anatomical study by anterograde and retrograde tracing methods, Neurosci., 7:615–630.CrossRefGoogle Scholar
  155. Kelley, A.E. and Stinus, L., 1984, The distribution of the projection from the parataenial nucleus of the thalamus to the nucleus accumbens in the rat: an autoradiographic study, Exp. Brain Res., 54:499–512.PubMedCrossRefGoogle Scholar
  156. Köhler, C., Chan-Palay, V., and Wu, J.Y., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain, Anat. Embryol., 169:41–44.PubMedCrossRefGoogle Scholar
  157. Kolb, B., 1984, Functions of the frontal cortex of the rat: a comparative review. Brain Res. Rev., 8:65–98.CrossRefGoogle Scholar
  158. Krayniak, P.F., Melbach, R.C., and Siegel, A., 1981, A projection from the entorhinal cortex to the nucleus accumbens in the rat, Brain Res., 209:427–431.PubMedCrossRefGoogle Scholar
  159. Krettek, J.E. and Price, J.L., 1978, Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat, J.Comp.Neurol., 178:225–254.PubMedCrossRefGoogle Scholar
  160. Krieger, M.S., Conrad, L.C.A., and Pfaff, D.W., 1979, An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus, J.Comp.Neurol. 183:785–816.PubMedCrossRefGoogle Scholar
  161. Lamour, Y., Dutar, P., and Jobert, A., 1984a, Septo-hippocampal and other medial septum-diagonal band neurons: electrophysiological and pharmacological properties. Brain Res., 309:227–239.PubMedCrossRefGoogle Scholar
  162. Lamour, Y., Dutar, P., Jobert, A., 1984b, Cortical projections of the nucleus of the diagonal band of Broca and of the substantia innominata in the rat: an anatomical study using the anterograde transport of a conjugate of wheat germ agglutinin and horseradish peroxidase, Neurosci., 12:395–408.CrossRefGoogle Scholar
  163. Lamour, Y., Dutar, P., Rascol, O., and Jobert, A., 1986, Basal forebrain neurons projecting to rat frontoparietal cortex: electrophysiological and pharmacological properties. Brain Res., 362:122–131.PubMedCrossRefGoogle Scholar
  164. Lasiter, P.S., Deems, D.A., and Garcia, J., 1985, Involvement of the anterior insular gustatory neocortex in taste-potentiated odor aversion learning, Physiol. Behav., 34:71–77.PubMedCrossRefGoogle Scholar
  165. LeDoux, J.E., 1987, Emotion, in: “Handbook of Physiology: The Nervous System”, Vol. V., Part 1, V.B. Mountcastle, R. Plum, and S.R. Geiger, eds., American Physiol. Society, Maryland, pp. 419–459.Google Scholar
  166. LeDoux, J.E., Ruggiero, D.A., and Reis, D.J., 1985, Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat, J.Comp.Neurol., 242:182–213.PubMedCrossRefGoogle Scholar
  167. LeDoux, J.E., Farb, C., and Ruggiero, D.A., 1990, Topographic organization of neurons in the acoustic thalamus that project to the amygdala, J. Neurosci., 10:1043–1054.PubMedGoogle Scholar
  168. Leranth, C. and Frotscher, M., 1989, Organization of the septal region in the rat brain: cholinergic-GABAergic interconnections and the termination of hippocampo-septal fibers, J.Comp.Neurol., 289:304–314.PubMedCrossRefGoogle Scholar
  169. Levey, A.I., Hallanger, A.E., and Wainer, B.H., 1987, Cholinergic nucleus basalis neurons may influence the cortex via the thalamus, Neurosci. Lett., 74:7–13.PubMedCrossRefGoogle Scholar
  170. Levin, E.D., McGurk, S.R., Rose, J.E., and Butcher, L.L., 1990, Cholinergic-dopaminergic interactions in cognitive performance, Behav. Neural Biol., 54:271–299PubMedCrossRefGoogle Scholar
  171. Lindsley, D.B., Bowden, J.W., and Magoun, H.W., 1949, Effect upon the EEG of acute injury to the brain stem activating system, EEGClin. Neurophysiol., 1:475–486.Google Scholar
  172. Lindvall, O. and Björklund, A., 1979, Dopaminergic innervation of the globus pallidus by collaterals from nigrostriatal pathway, Brain Res., 172:169–173.PubMedCrossRefGoogle Scholar
  173. Lo Conte, G., Casamenti, F., Bigl, V., Milaneschi, E., and Pepeu, G., 1982, Effect of magnocellular forebrain nuclei lesions on acetylcholine output from the cerebral cortex, electrocorticogram and behaviour. Arch. I tal.Biol., pp. 176–188.Google Scholar
  174. Luiten, P.G.M., Gaykema, R.P.A., Traber, J., and Spencer, D.G., 1987, Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoaagglutinin. Brain Res., 413:229–250.PubMedCrossRefGoogle Scholar
  175. Ma, C., Hohmann, C., Coyle, J.T., and Juliano, S.L., 1989, Lesions of the basal forebrain alter stimulus-evoked metabolic ativity in mouse somatosensory cortex, J.Comp.Neurol., 288:414–427.PubMedCrossRefGoogle Scholar
  176. Macchi, G. and Bentivoglio, M., 1986, The thalamic intralaminar nuclei and the cerebral cortex, in: “Cerebral Cortex”, (Vol. 5), E.G. Jones and A. Peters, eds., Plenum Press, New York, pp. 355–401.Google Scholar
  177. Malthe-Sorenssen, D., Cheney, D.L., and Costa, E., 1978a, Modulation of acetylcholine metabolism in the hippocampal cholinergic pathway by intraseptally injected substance P, J. Pharmacol. Exp. Therap., 206:21–28.Google Scholar
  178. Malthe-Sorenssen, D., Wood, P.L., Cheney, D.L., and Costa, E., 1978b, Modulation of the turnover rate of acetylcholine in rat brain by intraventricular injections of thyrotropin-releasing hormone, somatostatin, neurotensin and angiotensin II, J. Neurochem., 31:685–691.PubMedCrossRefGoogle Scholar
  179. Mann, D.M.A., 1988, Neuropathological and neurochemical aspects of Alzheimer’s disease, in: “Handbook of Psychopharmacology”, L.L. Iversen, S.D. Iversen, and S.H. Snyder, eds., Plenum, New York, pp. 1–56.CrossRefGoogle Scholar
  180. Mann, D.M.A. and Yates, P.O., 1983, Pathological basis for neurotransmitter changes in Parkinson’s disease, Neuropathol. Appl. Neurobiol., 9:3–19.PubMedCrossRefGoogle Scholar
  181. Martinez-Murillo, R., Blasco, I., Alavrez, F.J., Villalba, R., Solano, M.L., Montero-Caballero, I., and Rodrigo, J., 1988a, Distribution of enkephalin-immunoreactive nerve fibers and terminals in the region of the nucleus basalis magnocellularis of the rat: a light and electron microscopic study, J. Neurocytol., 17:361–376.PubMedCrossRefGoogle Scholar
  182. Martinez-Murillo, R., Semenenko, F., and Cuello, A.C., 1988b, The origin of tyrosine hydroxylase immunoreactive fibers in the regions of the nucleus basalis magnocellularis of the rat, Brain Res., 451:227–236.PubMedCrossRefGoogle Scholar
  183. Martinez-Murillo, R., Villalba, R.M., and Rodrigo, J., 1990, Immunocytochemical localization of cholinergic terminals in the region of the nucleus basalis magnocellularis of the rat: a correlated light and electron microscopic study, Neurosci., 36:361–376.CrossRefGoogle Scholar
  184. Mason, S.T. and Fibiger, H.C., 1979, Possible behavioural function for noradrenaline-acetylcholine interaction in brain. Nature. 277:396–397.PubMedCrossRefGoogle Scholar
  185. McGeer, P.L., McGeer, E.G., and Suzuki, J.S., 1977, Aging and extrapyramidal function. Arch Neurol., 34:33–35.PubMedCrossRefGoogle Scholar
  186. McGeer, P.L., McGeer, E.G., Suzuki, J., Dolman, C.E., andNagai, T., 1984, Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain, Neurol., 34:741–745.Google Scholar
  187. McGeorge, A.J. and Faull, R.L.M., 1989, The organization of the projection from the cerebral cortex to the striatum in the rat, Neurosci., 29:503–537.CrossRefGoogle Scholar
  188. McGinty, D., and Szymusiak, R., 1990, Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep, TINS. 13:48–487.Google Scholar
  189. McGurk, S.R., Levin, E.D., and Butcher, L.L., 1988, Cholinergic-dopaminergic interactions in radial-arm maze performance, Behav. Neural Biol., 49:234–239.PubMedCrossRefGoogle Scholar
  190. McGurk, S.R., Levin, E.D., and Butcher, L.L., 1989, Nicotinic-dopaminergic relationships and radial-arm maze performance in rats, Behav. Neural Biol., 52:78–86.PubMedCrossRefGoogle Scholar
  191. McKellar, S. and Loewy, A.D., 1982, Efferent projections of the Al catecholamine cell group in the rat: an autoradiographic study. Brain Res., 241:11–29.PubMedCrossRefGoogle Scholar
  192. McKenna, T.M., Ashe, J.H., and Weinberger, N.M., 1989, Cholinergic modulation of frequency receptive fields in auditory cortex, I, Frequency-specific effects of muscarinic agonists. Synapse, 4:30–43.PubMedCrossRefGoogle Scholar
  193. McNaughton, N., Azmitia, E.G., Williams, J.H., Buchan, A., and Gray, J.A., 1980, Septal elicitation of hippocampal theta rhythm after localized deaf ferentation of serotoninergic fibers. Brain Res., 200:259–269.PubMedCrossRefGoogle Scholar
  194. Melander, T., Hokfelt, T., and Rökaeus, A., 1986, Distribution of galanin-like immunoreactivity in rat central nervous system, J.Comp . Neurol., 248:475–517.PubMedCrossRefGoogle Scholar
  195. Mesulam, M.M., and Geula, C., 1988, Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J.Comp.Neurol., 275:216–240.PubMedCrossRefGoogle Scholar
  196. Mesulam, M.M. and Mufson, E.J., 1984, Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey, Brain. 107:253–274.PubMedCrossRefGoogle Scholar
  197. Mesulam, M.M., Mufson, E.J., Levey, A.I., and Wainer, B.H., 1983a, Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey, J.Comp.Neurol., 214:170–197.PubMedCrossRefGoogle Scholar
  198. Mesulam, M.M., Mufson, E.J., Wainer, B.H., and Levey, A.I., 1983b, Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch4-Ch6), Neurosci., 10:1185–1201.CrossRefGoogle Scholar
  199. Mesulam, M.M., Mufson, E.J., and Wainer, B.H., 1986a, Three-dimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for HRP, Brain Res., 367:301–308.PubMedCrossRefGoogle Scholar
  200. Mesulam, M.M., Volicer, L., Marquis, J.K., Mufson, E.J., and Green, R.C., 1986b, Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activities and some behavioral implications, Ann. Neurol., 19:144–151.PubMedCrossRefGoogle Scholar
  201. Metherate, R., and Weinberger, N.M., 1990, Cholinergic modulation of responses to single tones produces tone-specific receptive field alterations in cat auditory cortex, Synapse. 6:133–145.PubMedCrossRefGoogle Scholar
  202. Milner, T.A., Joh, T.H., Miller, R.J., and Pickel, V.M., 1984, Substance P, neurotensin, enkephalin, and catecholamine-synthesizing enzymes: light microscopic localizations compared with autoradiographic label in solitary efferents to the rat parabrachial region, J.Comp . Neurol., 226:434–447.PubMedCrossRefGoogle Scholar
  203. Moga, M.M., Herbert, H., Hurley, K.M., Yasui, Y., Gray, T.S., and Saper, C.B., 1990, Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat, J.Comp.Neurol., 295:624–661.PubMedCrossRefGoogle Scholar
  204. Mogenson, G.J., Swanson, L.W., and Wu, M., 1983, Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat, J. Neurosci., 3:189–202.PubMedGoogle Scholar
  205. Molliver, M.E., 1987, Serotonergic neuronal systems: what their anatomic organization tells us about function., J. Clin. Psychopharm., 7:3S-23S.CrossRefGoogle Scholar
  206. Moore, S.D. and Guyenet, P.G., 1983, An electrophysiological study of the forebrain projection of nucleus commissuralis: preliminary identification of presumed A2 catecholaminergic neurons, Brain Res., 263:211–222.PubMedCrossRefGoogle Scholar
  207. Morgan, D.G., May, P.C., and Finch, C.E., 1987, Dopamine and serotonin systems in human and rodent brain: effects of age and neurodegerative disease, J. Am. Geriatr. Soc., 35:334–345.PubMedGoogle Scholar
  208. Moroni, F., Peralta, E., Cheney, D.L., and Costa, E., 1978, On the regulation of GABA neurons in the caudatus, pallidus and nigra: effects of opioids and dopamine agonists, J. Pharmacol. Exp. Ther., 208:190–194.Google Scholar
  209. Moruzzi, G. and Magoun, H.W., 1949, Brain stem reticular formation and activation of the EEG, Electroenceph. Clin. Neurophysiol., 1:455–473.PubMedGoogle Scholar
  210. Mufson, E.J., Bothwell, M., Hersh, L.B., and Kordower, J.H., 1989, Nerve growth factor receptor immunoreactive profiles in the normal, aged human basal forebrain: colocalization with cholinergic neurons, J.Comp . Neurol., 285:196–217.PubMedCrossRefGoogle Scholar
  211. Nagel, J.A. and Huston, J.P., 1988, Enhanced inhibitory avoidance learning produced by post-trial injections of substance P into the basal forebrain, Behavl. Neural Biol., 49:374–385.CrossRefGoogle Scholar
  212. Nakajima, Y., Nakajima, S., Obata, K., Carlson, C.G., and Yamaguchi, K., 1985, Dissociated cell culture of cholinergic neurons from nucleus basalis of Meynert and other basal forebrain nuclei, Proc. Natl. Acad. Sci.USA. 82:6325–6329.PubMedCrossRefGoogle Scholar
  213. Nakajima, Y., Nakajima, S., and Inoue, M., 1988, Pertussis toxin-insensitive G protein mediates substance P-induced inhibition of potassium channels in brain neurons, Proc. Natl. Acad. Sci. USA. 85:3643–3647.PubMedCrossRefGoogle Scholar
  214. Napier, T.C., and Potter, P.E., 1989, Dopamine in the ventral pallidum/substantia innominata: biochemical and electrophysiological studies, Neuropharmacology. 28:757–760.PubMedCrossRefGoogle Scholar
  215. Napier, T.C., Muench, M.B., and Maslowski, R.J., 1991, Is dopamine a neurotransmitter within the ventral pallidum/substantia innominata?, in: “Basal Forebrain: Anatomy to Function”, T.C. Napier, P.W. Kaliwas, and I. Hanin, eds., Plenum Press, New York (in press).Google Scholar
  216. Nauta, W.J.H. and Kuypers, H.G.J.M., 1958, Some ascending pathways in the brain stem reticular formation, in: “Reticular Formation of the Brain”, H.H. Jasper, L.D. Proctor, R.S. Knighton, W.C. Noshay, and R.T. Costello, eds., Little, Brown, Boston, pp. 3–30.Google Scholar
  217. Nauta, W.J.H., Smith G.P., Faull, R.L.M., and Domesick, V.B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neurosci., 3:385–401.CrossRefGoogle Scholar
  218. Nicoll, R.A., 1988, The coupling of neurotransmitter receptors to ion channels in the brain, Science. 241:545–550.PubMedCrossRefGoogle Scholar
  219. Nilsson, O.G., Strecker, R.E., Daszuta, A., and Bjorklund, A., 1988, Combined cholinergic and serotonergic denervation of the forebrain produces severe deficits in a spatial learning task in the rat. Brain Res., 453:235–2456.PubMedCrossRefGoogle Scholar
  220. Nishijo, H., Ono T., and Nishino, H., 1988, Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance, J. Neurosci., 8:3570–3583.PubMedGoogle Scholar
  221. Nitecka, L., and Frotscher, M., 1989, Organization and synaptic interconnections of GABAergic and cholinergic elements in the rat amygdaloid nuclei: single- and double-Immunolableing studies, J.Comp . Neurol., 279:470–488.PubMedCrossRefGoogle Scholar
  222. Norgren, R., 1978, Projections from the nucleus of the solitary tract in the rat, Neurosci., 3:207–218.CrossRefGoogle Scholar
  223. Nyakas, C., Luiten, P.G.M., Spencer, D.G., and Traber, J., 1987, Detailed projection patterns of septal and diagonal band efferents to the hippocampus in the rat with emphasis on innervation of CAl and dentate gyrus, Brain Res. Bull., 18:533–545.PubMedCrossRefGoogle Scholar
  224. Olton, D.S., Wenk, G.L., and Markowska, A.M., 1991, Basal forebrain, memory, attention, in: “Activation to Acquisition: Functional Aspects of the Basal Forebrain Cholinergic System”, R. Richardson, ed., Birkhäauser, Boston (in press).Google Scholar
  225. Palazzi, E., Fisone, G., Hökfelt, T., Bartfai, T., and Console, S., 1988, Galanin inhibits the muscarinic stimulation of phosphoinositide turnover in rat ventral hippocampus, Eur. J. Pharmacol., 148:479–480.PubMedCrossRefGoogle Scholar
  226. Palkovits, M., 1984, Distribution of neuropeptides in the central nervous system: a review of biochemical mapping studies, Progr. Neurobiol., 23:151–189.CrossRefGoogle Scholar
  227. Palkovits, M., Záborszky, L., Feminger, A., Mezey, E., Fekete, M.I.K., Herman, J.P., Kanyicska, B., and Szabo, D., 1980, Noradrenergic innervation of the rat hypothalamus: experimental biochemical and electron microscopic studies, Brain Res., 191:161–172.PubMedCrossRefGoogle Scholar
  228. Palmer, A.M., Francis, P.T., Bowen, D.M., Benton, J.S., Neary, D., Mann, D.M.A., and Snowden, J.S., 1987, Catecholaminergic neurons assessed ante-mortem in Alzheimer’s disease, Brain Res., 414:365–375.PubMedCrossRefGoogle Scholar
  229. Pandya, D.N. and Yeterian, E.H., 1985, Architecture and connections of cortical association areas, in: “Cerebral Cortex”, Vol. 4, A. Peters and E.G. Jones, eds., Plenum Press, New York, pp. 3–61.Google Scholar
  230. Pare, D., Smith, Y., Parent, A., and Steriade, M., 1988, Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei, Neurosci., 25:69–86.CrossRefGoogle Scholar
  231. Parent, A., 1990, Extrinsic connections of the basal ganglia, TINS. 13:254–258.PubMedGoogle Scholar
  232. Penny, G.R., Afsharpour, S., andKitai, S.T., 1986, The glutamate decarboxylase-leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap, Neurosci. 17:1011–1045.CrossRefGoogle Scholar
  233. Petsche, H., Stumpf, C.H., and Gogolak, G., 1962, The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus, I. The control of hippocampus arousal activity by the septum cells, Electroenceph. Clin. Neurophysiol., 14:202–211.PubMedCrossRefGoogle Scholar
  234. Peters, A., Palay, S.G., and Webster, H. de F., 1976, “The Fine Structure of the Nervous System: The Neurons and Supporting Cells”, W.B. Saunders.Google Scholar
  235. Pirch, J.H., Corbus, M.J., Rigdon, G.C., andLyness, W.H., 1986, Generation of cortical event-related slow potentials in the rat involves nucleus basalis cholinergic innervation, Electroenceph. Clin. Neurophys., 63:464–475.CrossRefGoogle Scholar
  236. Pirch, J., Rigdon, G., Rucker, G., and Turco, K., 1991, Basal forebrain modulation of cortical cell activity during conditioning, in: “The Basal Forebrain: Anatomy to Function”, T.C. Napier, P. Kaliwas and I. Hanin, eds., Plenum Press, New York (in press)Google Scholar
  237. Phillipson, O.T. and Griffiths, A.C., 1985, The topographic order of inputs to the nucleus accumbens in the rat, Neurosci., 16:275–296.CrossRefGoogle Scholar
  238. Price, J.L. and Amaral, D.G., 1981, An autoradiographic study of the projections of the central nucleus of the monkey amygdala, J. Neurosci., 11:1242–1259.Google Scholar
  239. Price, J.L., Russchen, F.T., and Amaral, D.G., 1987, The limbic region, II, The amygdaloid complex, in: “Handbook of Chemical Neuroanatomy, Vol. 5, Integrated Systems of the CNS, Part I”, A. Björklund, T. Hökfelt, and L.W. Swanson, eds., Elsevier Science Publications, pp. 279–388.Google Scholar
  240. Price, D.L., Whitehouse, P.J., and Struble, R.G., 1986, Cellular pathology in Alzheimer’s and Parkinson’s diseases, TINS. 9:29–33.Google Scholar
  241. Rasmusson, D.D., and Dykes, R.W., 1988, Long-term enhancement of evoked potentials in cat somatosensory cortex produced by co-activation of the basal forebrain and cutaneous receptors, Exp. Brain Res., 70:276–286.PubMedCrossRefGoogle Scholar
  242. Ricardo, J.A., 1981, Efferent connections of the subthalamic region in the rat, II, The zona incerta. Brain Res., 214:43–60.PubMedCrossRefGoogle Scholar
  243. Ricardo, J.A. and Koh, E.T., 1978, Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res., 153:1–26.PubMedCrossRefGoogle Scholar
  244. Richardson, R.T. and Delong, M.R., 1988, A reappraisal of the functions of the nucleus basalis of Meynert, TINS. 11:264–267.PubMedGoogle Scholar
  245. Richardson, R.T., and DeLong, M.R., 1991, Functional implications of tonic and phasic activity changes in nucleus basalis neurons, in: “Activation to Acquisition: Functional Aspects of the Basal Forebrain Cholinergic System”, R. Richardson, ed., Birkhäuser, Boston (in press).Google Scholar
  246. Richardson, R.T., Mitchell, S.J., Baker, F.H., and DeLong, M.R., 1988, Responses of nucleus basalis of Meynert neurons in behaving monkeys in: “Cellular Mechanisms of Conditioning and Behavioral Plasticity”, C.D. Woody, D.L. Alkon, and J.L. McGaugh, eds., Plenum Press, New York, pp. 161–173.Google Scholar
  247. Riehe, D., de Pommery, J., and Menetrey, D., 1990, Neuropeptides and catecholamines in efferent projections of the nuclei of the solitary tract in the rat, J.Comp . Neurol., 293:399–424.CrossRefGoogle Scholar
  248. Richter-Levin, G., and Segal, M., 1989, Spatial performance is severely impaired in rats with combined reduction of serotonergic and cholinergic transmission. Brain Res., 477:404–407.PubMedCrossRefGoogle Scholar
  249. Riekkinen, Jr., P., Sirviö, J., Miettinen, R., and Riekkinen, P., 1990, Interaction between raphe dorsalis and nucleus basalis magnocellularis in the regulation of high-voltage spindle activity in rat neocortex, Brain Res., 526:31–36.PubMedCrossRefGoogle Scholar
  250. Rigdon, G.C., and Pirch, J.H., 1986, Nucleus basalis involvement in conditioned neuronal responses in the rat frontal cortex, J. Neurosci., 6:2535–2542.PubMedGoogle Scholar
  251. Robinson, S.E., 1986, Contribution of the dorsal noradrenergic bundle to the effect of amphetamine on acetylcholine turnover, Adv. Behav. Biol., 30:43–50.Google Scholar
  252. Robinson, S.E., 1989, 6-Hydroxydopamine lesion of the ventral noradrenergic bundle blocks the effect of amphetamine on hippocampal acetylcholine, Brain Res., 397:181–184.CrossRefGoogle Scholar
  253. Robinson, S.E., Malthe-Sorenssen, D., Wood, P.L., and Gommissiong, J., 1979, Dopaminergic control of the septal-hippocampal cholinergic pathway, J. Pharmacol. Exp. Therap., 208:476–479.Google Scholar
  254. Rolls, E.T., 1989, Information processing in the taste system of primates, J. Exp. Biol., 146:141–164PubMedGoogle Scholar
  255. Rosenkilde, C.E., Bauer, R.H., and Fuster, J.M., 1981, Single cell activity in ventral prefrontal cortex of behaving monkeys, Brain Res., 209:375–394.PubMedCrossRefGoogle Scholar
  256. Royce, G.J. and Mourey, R.J., 1985, Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat, J.Comp.Neurol., 235:277–300.PubMedCrossRefGoogle Scholar
  257. Ruggiero, D.A., Mraovitch, S., Granata, A.R., Anwar, M., and Reis, D.J., 1987, A role of insular cortex in cardiovascular function, J.Comp . Neurol., 257:189–207.PubMedCrossRefGoogle Scholar
  258. Russchen, F.T., Amaral, D.G., and Price, J.L., 1985a, The afferent connections of the substantia innominata in the monkey, Macaca fascicularis,J.Comp . Neurol., 242:1–27.PubMedCrossRefGoogle Scholar
  259. Russchen, F.T., Bakst, I., Amaral, D.G., and Price, J.L., 1985b, The amygdalostriatal projections in the monkey: an anterograde tracing study, Brain Res., 329:241–257.PubMedCrossRefGoogle Scholar
  260. Russchen, F.T. and Price, J.L., 1984, Amygdalostriatal projections in the rat; topographical organization and fiber morphology shown using the lectin PHA-L as as anterograde tracer, Neurosci. Lett., 47:15–22.PubMedCrossRefGoogle Scholar
  261. Rye, D.B., Wainer, B.H., Mesulam, M.-M., Mufson, E.J., and Saper, C.B., 1984, Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components combining retrograde tracing and immunohistochemical localization of choline acetyltransferase, Neurosci., 13:627–643.CrossRefGoogle Scholar
  262. Saper, C.B., 1982, Convergence of autonomic and limbic connections in the insular cortex in the rat, J.Comp . Neurol., 210:163–173.PubMedCrossRefGoogle Scholar
  263. Saper, C.B., 1984, Organization of cerebral cortical afferent systems in the rat, I. Magnocellular basal nucleus, J.Comp.Neurol., 222:313–342.PubMedCrossRefGoogle Scholar
  264. Saper, C.B., 1985, Organization of cerebral cortical afferent systems in the rat, II. Hypothalamocortical projections, J.Comp . Neurol., 237:21–46.PubMedCrossRefGoogle Scholar
  265. Saper, C.B., 1987, Diffuse cortical projection systems: anatomical organization and role in cortical function, in: “Handbook of Physiology: The Nervous System”, Vol. V., Part 1, V.B. Mountcastle, F. Plum and S. Geiger, eds., Amer. Physiol. Soc., Bethesda, pp. 169–210.Google Scholar
  266. Saper, C.B. and Chelimsky, T.C., 1984, A cytoarchitectonic and histochemical study of nucleus basalis and associated cell groups in the normal human brain, Neurosci., 13:1023–1037.CrossRefGoogle Scholar
  267. Saper, C.B. and Loewy, A.D., 1980, Efferent connections of the parabrachial nucleus in the rat. Brain Res., 197:291–317.PubMedCrossRefGoogle Scholar
  268. Saper, C.B., Swanson, L.W., and Cowan, W.M., 1976, The efferent connections of the ventromedial nucleus of the hypothalamus of the rat, J.Comp . Neurol., 169:409–442.PubMedCrossRefGoogle Scholar
  269. Saper, C.B., Swanson, L.W., and Cowan, W.M., 1978, The efferent connections of the anterior hypothalamus of the rat, cat, and monkey, J.Comp . Neurol., 182:575–600.PubMedCrossRefGoogle Scholar
  270. Saper, C.B., Swanson, L.W., and Cowan, W.M., 1979, An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat, J.Comp.Neurol., 183:689–706.PubMedCrossRefGoogle Scholar
  271. Saper, C.B., Wainer, B.H., and German, D.G., 1987, Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, Neurosci., 23:389–398.CrossRefGoogle Scholar
  272. Sarter, M., Bruno, J.P., and Dudchenko, P., 1990, Activating the damaged basal forebrain cholinergic system: tonic stimulation versus signal amplification, Psychopharmacol., 101:1–17.CrossRefGoogle Scholar
  273. Sarter, M., Schneider, H.H., and Stephans, D.N., 1988, Treatment strategies for senile dementia: antagonist ß-carbolines, TINS. 11:13–17.PubMedGoogle Scholar
  274. Sato, H., Hata, Y., Hagihara, K., and Tsumoto, T., 1987, Effects of cholinergic depletion on neuron activities in the cat visual cortex, J. Neurophvsiol., 58:781–794.Google Scholar
  275. Satoh, K. and Fibiger, H.C., 1986, Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections, J.Comp.Neurol., 253:277–302.PubMedCrossRefGoogle Scholar
  276. Sawchenko, P.E., Arias, C., and Bittencourt, J.C., 1990, Inhibin ß, somatostatin, and enkephalin immunoreactivities coexist in caudal medullary neurons that project to the paraventricular nucleus of the hypothalamus, J.Comp.Neurol., 291:269–280.PubMedCrossRefGoogle Scholar
  277. Scheibel, M.E. and Scheibel, A.B., 1958, Structural substrates for integrative patterns in the brain stem reticular core, in: “Reticular Formation of the Brain”, H.H. Jasper, L.D. Proctor, R.S. Knighton, W.C. Noshay, and R.T. Costello, eds., Little, Brown, Boston, pp. 31–55.Google Scholar
  278. Schwaber, J.S., Rogers, W.T., Satoh, K., and Fibiger, H.C., 1987, Distribution and organization of cholinergic neurons in the rat forebrain demonstrated by computer-aided data acquisition and three-dimensional reconstruction, J.Comp . Neurol., 263:309–325.PubMedCrossRefGoogle Scholar
  279. Selemon, L.D. and Goldman-Rakic, P.S., 1985, Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey, J.Neurose i., 5:776–794.Google Scholar
  280. Semba, K., 1991, The cholinergic basal forebrain: A critical role in cortical arousal, in: “The Basal Forebrain: Anatomy to Function”, T.C. Napier, P. Kaliwas, and I. Hanin, eds., Plenum Press, New York (in press).Google Scholar
  281. Semba, K. and Fibiger, H., 1989, Organization of central cholinergic systems. Prog. Brain Res., 79:37–63.PubMedCrossRefGoogle Scholar
  282. Semba, K., Reiner, P.B., McGeer, E.G., and Fibiger, H., 1987, Morphology of cortically projecting basal forebrain neurons in the rat as revealed by intracellular iontophoresis of horseradish peroxidase, Neurosci., 20:637–651.CrossRefGoogle Scholar
  283. Semba, K., Reiner, P.B., McGeer, E.G., and Fibiger, H.C., 1988, Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat, J.Comp.Neurol., 267:433–453.PubMedCrossRefGoogle Scholar
  284. Sesack, S.R., Deutch, A.Y., Roth, R.H., and Bunney, B.S., 1989, Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin, J.Comp . Neurol., 290:213–242.PubMedCrossRefGoogle Scholar
  285. Shipley, M.T. and Geinisman, Y., 1984, Anatomical evidence for convergence of olfactory, gustatory, and visceral afferent pathways in mouse cerebral cortex. Brain Res. Bull., 12:221–226.PubMedCrossRefGoogle Scholar
  286. Shu, S.Y., Penny, G.R., and Peterson, G.M., 1988, The “marginal division”: a new subdivision in the neostriatum of the rat, J. Chem. Neuroanat., 1:147–163.PubMedGoogle Scholar
  287. Sillito, A.M. and Kemp, J.A., 1983, Cholinergic modulation of the functional organization of the cat visual cortex.Brain Res., 289:143–155.PubMedCrossRefGoogle Scholar
  288. Simerly, R.B. and Swanson, L.W., 1988, Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat, J.Comp.Neurol., 270:209–242PubMedCrossRefGoogle Scholar
  289. Simon, L., LeMoal, M., and Galas, A., 1979, Efferents and afferents of the ventral tegmental-AlO region studied after local injection of [H] Leucine and horseradish peroxidase, Brain Res., 178:17–40.PubMedCrossRefGoogle Scholar
  290. Smith, D.A. and Bolam, J.P., 1990, The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones, TINS. 13:259–265.PubMedGoogle Scholar
  291. Sofroniew, M.V., Eckenstein, F., Thoenen, H., and Cuello, A.C., 1982, Topography of choline acetyltransferase-containing neurons in the forebrain of the rat, Neurosci. Lett., 33:7–12.PubMedCrossRefGoogle Scholar
  292. Sofroniew, M.V., Pearson, R.C.A., and Powell, T.P.S., 1987, The cholinergic nuclei of the basal forebrain of the rat: normal structure, development and experimentally induced degeneration. Brain Res., 411:310–331.PubMedCrossRefGoogle Scholar
  293. Sofroniew, M.V., Priestly, J.V., Consolazione, A., Eckenstein, F., and Cuello, A.C., 1985, Cholinergic projections from the midbrain and pons to the thalamus in rat, identified by combined retrograde and choline acetyltransferase immunohistochemistry. Brain Res., 329:213–223.PubMedCrossRefGoogle Scholar
  294. Starzl, T.E., Taylor, C.W., and Magoun, H.W., 1951, Ascending conduction in reticular activating system, with special reference to the diencephalon, J. Neurophysiol., 14:461–477.PubMedGoogle Scholar
  295. Staubli, U. and Huston, J.P., 1980, Facilitation of learning by post-trial injection of substance P into the medial septal nucleus, Behav. Brain Res., 1:245–255.PubMedCrossRefGoogle Scholar
  296. Steriade, M., 1970, Ascending control of thalamic and cortical responsiveness. Int. Rev. Neurobiol., 12:87–144.PubMedCrossRefGoogle Scholar
  297. Steriade, M. and Llinas, R.R., 1988, The functional states of the thalamus and the associated neuronal interplay, Physiol. Rev., 68:649–742.PubMedGoogle Scholar
  298. Steriade, M. and McCarley, R.W., 1990, “Brainstem Control of Wakefulness and Sleep”, Plenum Press, New York.Google Scholar
  299. Steriade, M., Paré, D., Parent, A., and Smith Y., 1988, Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalmic nuclei in the cat and macaque monkey, Neurosci., 25: 47–67.CrossRefGoogle Scholar
  300. Stewart, M. and Fox, S.E., 1990, Do septal neurons pace the hippocampal theta rhythm? TINS. 13:163.Google Scholar
  301. Swanson, L.W., 1976, An autoradiographic study of the efferent connections of the preoptic region in the rat, J.Comp . Neurol., 167:227–256.PubMedCrossRefGoogle Scholar
  302. Swanson, L.W., 1987, The hypothalamus, in “Handbook of Chemical Neuroanatomy: Integrated Systems of the CNS”, (Part I, Vol. 5), A. Bjorklund, T. Hökfelt, and L.W. Swanson, eds., Elsevier, pp. 1–124.Google Scholar
  303. Swanson, L.W. and Cowan, W.M., 1979, The connections of the septal region in the rat, J.Comp.Neurol., 186:621–656.PubMedCrossRefGoogle Scholar
  304. Swanson, L.W. and Köhler, C., 1986, Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat, J. Neurosci., 6:3010–3023.PubMedGoogle Scholar
  305. Szerb, J.C., 1967, Cortical acetylcholine release and electroencephalographic arousal, J. Physiol., 192:329–343.PubMedGoogle Scholar
  306. Szigethy, E., Leonard, K., and Beaudet, A., 1990, Ultrastructural localization of [125I]neurotensin binding sites to cholinergic neurons of the rat nucleus basalis magnocellularis, Neurosci., 36:377–391.CrossRefGoogle Scholar
  307. Szymusiak, R. and McGinty, D., 1989, Sleep-waking discharge of basal forebrain projection neurons in cats. Brain Res. Bull., 22:423–430.PubMedCrossRefGoogle Scholar
  308. ter Horst, G.J. and Luiten, P.G.M., 1986, The projections of the dorsomedial hypothalamic nucleus in the rat. Brain Res.Bull., 16:231–248.PubMedCrossRefGoogle Scholar
  309. Thorpe, S.J., Rolls, E.T., and Maddison, S., 1983, The orbitofrontal cortex: neuronal activity in the behaving monkey, Exp. Brain Res., 49:93–115.PubMedCrossRefGoogle Scholar
  310. Tomlinson, B.E., Irving, D., and Blessed, G., 1981, Cell loss in the locus coeruleus in senile dementia of Alzheimer’s type, J. Neurol. Sci., 49:419–428.PubMedCrossRefGoogle Scholar
  311. Turner, B.H., Mishkin, M., and Knapp, M., 1980, Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey, J.Comp.Neurol., 191:515–543.PubMedCrossRefGoogle Scholar
  312. van der Kooy, D., Koda, L.Y., McGinty, J.F., Gerfen, C.R., and Bloom, F.E., 1984, The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in the rat, J.Comp . Neurol., 224:1–24.PubMedCrossRefGoogle Scholar
  313. Vanderwolf, C.H., 1988, Cerebral activity and behavior; control by central cholinergic and serotonergic systems, Int. Rev. Neurobiol., 30:225–330PubMedCrossRefGoogle Scholar
  314. Vanderwolf, C.H., Baker, G.B., and Dickson, C., 1990, Serotonergic control of cerebral activity and behavior: models of dementia, Ann. NY. Acad. Sci., 600:366–383.PubMedCrossRefGoogle Scholar
  315. van Hoesen, G.W., 1981, The differential distribution, diversity and sprouting of cortical projections to the amygdala in the Rhesus monkey, in: “The Amygdaloid Complex”, (INSERM Symposium No. 20), Y. Ben-Ari, ed., Elsevier, North Holland, pp. 77–104.Google Scholar
  316. van Hoesen, G.W, and Pandya, D.N., 1975, Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey, I. Temporal lobe afferents. Brain Res., 95:1–24.PubMedCrossRefGoogle Scholar
  317. van Wimersma Greidanus, T.B., Van Praag, M.C.G., Kalmann, R., Rinkel, G.J.E., Croiset, G., Hoeke, E.G., Van Egmond, M.A.H., and Fekete, M., 1982, Behavioral effects of neurotensin, Ann. NY Acad. Sci., 400:319–329.PubMedCrossRefGoogle Scholar
  318. Vécsei, L., Kiräly, G., Bollók, Nagy, A., Varga, J., Penke, B., and Telegdy, G., 1984, Comparative studies with somatostatin and cysteamine in different behavioral tests on rats, Pharmacol. Biochem. Behav., 21:833–837.PubMedCrossRefGoogle Scholar
  319. Versteeg, D.H.G., Van der Gugten, J., de Jong, W., and Palkovits, M., 1976, Regional concentrations of noradrenaline and dopamine in the brain. Brain Res., 113:563–574.PubMedCrossRefGoogle Scholar
  320. Vertes, R.P., 1977, Selective firing of rat pontine gigantocellular neurons during movement and REM sleep. Brain Res., 128:146–152.PubMedCrossRefGoogle Scholar
  321. Vertes, R.P., 1979, Brain stem gigantocellular neurons: patterns of activity during behavior and sleep in the freely moving rat, J. Neurophysiol., 42:214–228.PubMedGoogle Scholar
  322. Vertes, R.P., 1981, An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization, J. Neurophysiol., 46:1140–1159.PubMedGoogle Scholar
  323. Vertes, R.P., 1988, Brainstem afferents to the basal forebrain in the rat, Neurosci., 24:907–935.CrossRefGoogle Scholar
  324. Vertes, R.P., 1990a, Fundamentals of brainstem anatomy: a behavioral perspective, in: “Brainstem Mechanisms of Behavior”, W.R. Klemm and R.P. Vertes, eds., John Wiley and Sons, New York, pp. 33–103.Google Scholar
  325. Vertes, R.P., 1990b, Brainstem mechanisms of slow-wave sleep and REM sleep, in: “Brainstem Mechanisms of Behavior”, W.R. Klemm and R.P. Vertes, eds., John Wiley and Sons, New York, pp. 535–583.Google Scholar
  326. Vertes, R.P. and Martin, G.F., 1988, Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat, J.Comp.Neurol., 275:511–541.PubMedCrossRefGoogle Scholar
  327. Vertes, R.P., Martin, G.F., and Waltzer, R., 1986, An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat, Neurosci., 19:873–898.CrossRefGoogle Scholar
  328. Wainer, B.H., Bolam, J.P., Freund, T.F., Henderson, Z., Totterdell, S., and Smith, A.D., 1984, Cholinergic synapses in the rat brain: a correlated light and electron microscopic immunohistochemical study employing a monoclonal antibody against choline acetyltransferase, Brain Res., 308:69–76.PubMedCrossRefGoogle Scholar
  329. Walaas, I. and Fonnum, F., 1979, The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions. Brain Res., 177:325–336.PubMedCrossRefGoogle Scholar
  330. Walker, L.C., Koliatsos, V.E., Kitt, C.A., Richardson, R.T., Rökaeus, Ä., and Price, D.L., 1989, Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey, J.Comp.Neurol., 280: 272–282.PubMedCrossRefGoogle Scholar
  331. Wenk, G.L.J 1984, Pharmacological manipulations of the substantia innominata-cortical cholinergic pathway, Neurosci. Lett., 51:99–103.PubMedCrossRefGoogle Scholar
  332. Wilson, F.A.W. and Rolls, E.T., 1990a, Neuronal responses related to the novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca, and periventricular region of the primate basal forebrain, Exp. Brain Res., 80:104–120.PubMedCrossRefGoogle Scholar
  333. Wilson, F.A.W, and Rolls, E.T., 1990b, Neuronal responses related to reinforcement in the primate basal forebrain, Brain Res., 509:213–231.PubMedCrossRefGoogle Scholar
  334. Witter, M.P., Groenewegen, H.J., Lopes da Silva, F.H., and Lohman, A.H.M., 1989, Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region, Progr. Neurobiol., 33:161–252.CrossRefGoogle Scholar
  335. Wood, P.L. and Cheney, D.L., 1979, The effect of muscarinic receptor blockers on the turnover rate of acetylcholine in various regions of the rat brain. Can. J. Physiol. Pharmacol., 57:404–411.PubMedCrossRefGoogle Scholar
  336. Wood, P.L. and McQuade, P., 1986, Substantia innominata-cortical cholinergic pathway: regulatory afferents, Adv. Behav. Biol., 30:999–1006.Google Scholar
  337. Wood, P.L. and Richard, J., 1982, GABAergic regulation of the substantia innominata-cortical cholinergic pathway, Neuropharmacol., 21:969–972.CrossRefGoogle Scholar
  338. Wood, P.L., Cheney, D.L., and Costa, E., 1979, Modulation of the turnover rate of hippocampal acetylcholine by neuropeptides: possible site of action of a-melanocyte-stimulating hormone, adrenocorticotrophic hormone and somatostatin, J.Pharm.Exp. Ther., 209:97–103.Google Scholar
  339. Woody, C.D., 1982, Acquisition of conditioned facial reflexes in the cat: cortical control of different facial movements, Fed. Proc., 41:2160–2168.PubMedGoogle Scholar
  340. Woolf, N.J. and Butcher, L.L., 1986, Cholinergic systems in the rat brain, III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res.Bull., 16:603–637.PubMedCrossRefGoogle Scholar
  341. Woolf, N.J., Eckenstein, F., and Butcher, L.L., 1984, Cholinergic systems in the rat brain, I. Projections to the limbic telencephalon. Brain Res.Bull., 13:751–784.PubMedCrossRefGoogle Scholar
  342. Woolf, N.J., Hernit, M.C., and Butcher, L.L., 1986, Cholinergic and non-cholinergic projections from the rat basal forebrain revealed by combined choline acetyltransferase and Phaseolus vulgaris leucoagglutinin immunohistochemistry, Neurosci. Lett., 66:281–286.PubMedCrossRefGoogle Scholar
  343. Yau, W.M., Dorset, J.A., and Youther, M.L., 1986, Evidence for galanin as an inhibitory neuropeptide on myenteric cholinergic neurons in the guinea-pig small intestine, Neurosci. Lett., 3:305–308.CrossRefGoogle Scholar
  344. Yau, W.M., Lingle, P.F., and Youther, M.L., 1983, Modulation of cholinergic neurotransmitter release from myenteric plexus by somatostatin, Peptides. 4:49–53.PubMedCrossRefGoogle Scholar
  345. Záborszky, L., 1982, Afferent connections of the medial basal hypothalamus. Adv. Anat. Embryol. Cell Biol. 69:1–107.PubMedCrossRefGoogle Scholar
  346. Záborszky, L., 1989a, Afferent connections of the forebrain cholinergic projection neurons, with special reference to monoaminergic and peptidergic fibers, in: “Central Cholinergic Synaptic Transmission”, M. Frotscher and U. Misgeld, eds., Birkhäuser, Basel, pp. 12–32.CrossRefGoogle Scholar
  347. Záborszky, L., 1989b, Peptidergic-cholinergic interactions in the basal forebrain, in: “Alzheimer’s Disease: Advances in Basic Research and Therapies”, R.J. Wurtman, S.H. Corkin, J.H. Growdon, and E. Ritter-Walker, eds., Proc. Fifth Meeting Int. Study Group on the Pharmacology of Memory Disorders Associated with Aging, CBSMCT, Cambridge, Massachusetts, pp. 521–528.Google Scholar
  348. Záborszky, L. and Braun, A., 1988, Peptidergic afferents to forebrain cholinergic neurons, Soc. Neurosci. Abstr., 14:905.Google Scholar
  349. Záborszky, L. and Cullinan, W.E., 1989, Hypothalamic axons terminate on forebrain cholinergic neurons: an ultrastructural double-labeling study using PHA-L tracing and ChAT immunocytochemistry, Brain Res., 479:177–184.PubMedCrossRefGoogle Scholar
  350. Záborszky, L. and Heimer, L., 1989, Combinations of tracer techniques, especially HRP and PHA-L, with transmitter identification for correlated light and electron microscopic studies, in: “Neuroanatomical Tract-Tracing Methods 2: Recent Progress”, L. Heimer and L. Záborszky, eds., Plenum Press, New York, pp. 49–96Google Scholar
  351. Záborszky, L. and Luine, V.N., 1987, Evidence for existence of monoaminergic-cholinergic interactions in the basal forebrain, J. Cell. Biol., Suppl. 11D, 187.Google Scholar
  352. Záborszky, L., Alheid, G.F., Alones, V., Oertel, W.H., Schmechel, D.E., and Heimer, L., 1982, Afferents of the ventral pallidum studied with a combined immunohistochemical-anterograde degeneration method, Soc. Neurosci. Abstr., 8:218.Google Scholar
  353. Záborszky, L., Carlsen, J., Brashear, H.R., and Heimer, L., 1986a, Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band, J.Comp.Neurol., 243:488–509.PubMedCrossRefGoogle Scholar
  354. Záborszky, L., Eckenstein, F., Leranth, Cs., Oertel, W., Schmechel, D., Alones, V., and Heimer, L., 1984b, Cholinergic cells of the ventral pallidum: a combined electron microscopic immunocytochemical, degeneration and HRP study, Soc. Neurosci. Abst., 10:8.Google Scholar
  355. Záborszky, L., Heimer, L., Eckenstein, F. and Leranth, C., 1986b, GABAergic input to cholinergic forebrain neurons: an ultrastructural study using retrograde tracing of HRP and double immunolabeling, J.Comp.Neurol., 250:282–295.PubMedCrossRefGoogle Scholar
  356. Záborszky, L., Leranth, C., and Heimer, L., 1984a, Ultrastuctural evidence of amydalofugal axons terminating on cholinergic cells of the rostral forebrain, Neurosci. Lett., 52:219–225.PubMedCrossRefGoogle Scholar
  357. Záborszky, L., Luine, V.N., Snavely, L., Heimer, L., 1986c, Biochemical changes in the cholinergic forebrain system following transection of the ascending brainstem fibers, Soc. Neurosci. Abstr., 12:571.Google Scholar
  358. Záborszky, L., Luine, V.N., Cullinan, W.E., and Heimer, L., 1991, Direct catecholaminergic-cholinergic interactions in the basal forebrain: morphological and biochemical studies, (submitted).Google Scholar
  359. Zemlan, F.P., Behbehani, M.M., and Beckstead, R.M., 1984, Ascending and descending projections from nucleus reticularis magnocellularis and nucleus reticularis gigantocellularis: an autoradiographic and horseradish peroxidase study in the rat. Brain Res., 292:207–220.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Lászlo Záborszky
    • 1
  • William E. Cullinan
    • 1
  • Alex Braun
    • 2
  1. 1.Departments of Otolaryngology, Neurosurgery and NeurologyUniversity of Virginia Health Science CenterCharlottesvilleUSA
  2. 2.Department of PathologyState University of New YorkStony BrookUSA

Personalised recommendations