Functional Output of the Basal Forebrain

  • George F. Koob
  • Neal R. Swerdlow
  • Franco Vaccarino
  • Carol Hubner
  • Luigi Pulvirenti
  • Friedbert Weiss
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 295)


The basal forebrain is composed of many important components, one of which is the ventral striatum including the nucleus accumbens and olfactory tubercle. Both neuroanatomical and behavioral studies have provided important evidence implicating the ventral striatum as an interface between the limbic system and the extrapyramidal motor system (Kelley and Stinus, 1984; Heimer and Wilson, 1975; Mogenson and Nielson, 1984a). The ventral striatum receives allocortical projections from the hippocampus and amygdala (Kelley and Domesick, 1982), and a major dopaminergic projection from the ventral midbrain, especially the region of the ventral tegmental area. The availability of reliable behavioral measures and powerful neuropharmacological probes has allowed substantial progress to be made in the understanding of the functional significance of the ventral striatum and its circuitry.


Locomotor Activity Nucleus Accumbens Ventral Tegmental Area Conditioned Place Preference Basal Forebrain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnati, L.F., and Fuxe, K., 1983, Subcortical limbic 3H-N-propylnorapomorphine binding sites are markedly modulated by cholecystokinin-8 in vitro, Biosci. Rep., 3:1101.PubMedCrossRefGoogle Scholar
  2. Alheid, G.F., and Heimer, L., 1988, New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striato pallidal, amygdaloid, and corticopetal components of substantia inominata, Neuroscience. 27:1.PubMedCrossRefGoogle Scholar
  3. Amalric, M., and Koob, G., 1985, Low doses of methylnaloxonium in the nucleus accumbens antagonize hyperactivity induced by heroin in the rat, Pharmacol. Biochem. Behav., 23:411.CrossRefGoogle Scholar
  4. Bechara, A., and Van der Kooy, D., 1989, The tegmental pedunculopontine nucleus: A brain-stem output of the limbic system critical for the conditioned place preferences produced by morphine and amphetamine, J. Neurosci., 9: 3400.PubMedGoogle Scholar
  5. Bozarth, M.A., and Wise, R.A., 1981, Intracranial self-administration of morphine into the ventral tegmental area in rats, Life Sci., 28:551.PubMedCrossRefGoogle Scholar
  6. Brudynski, S.M., and Mogenson, G.J., 1985, Association of the mesencephalic locomotor region with locomotor activity induced by injections of amphetamine into the nucleus accumbens, Brain Res., 334:77.CrossRefGoogle Scholar
  7. Cotman, C.W., Monaghan, D.T., O’Hersen, O.P., and Storm-Mathisen, J., 1987, Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci., 10:273.CrossRefGoogle Scholar
  8. Divac, I., Kosmal, A., Bjorklund, A., and Lindvall, D., 1978, Subcortical projections to the prefrontal cortex in the rat as revealed by the horseradish peroxidase technique, Neuroscience. 3:785.PubMedCrossRefGoogle Scholar
  9. Ettenberg, A., Pettit, H.O., Bloom, F.E., and Koob, G.F., 1982, Heroin and cocaine self-administration in rats: Mediation by separate neural systems, Psychopharmacology, 78:204.PubMedCrossRefGoogle Scholar
  10. Goeders, N.E., Lane, J.D., and Smith, J.E., 1984, Intracranial self-administration of methionine enkephalin into the nucleus accumbens, Pharmacol. Biochem. Behav., 20:451.PubMedCrossRefGoogle Scholar
  11. Grillner, S., and Shik, M.I., 1973, On the descending control of the lumbrosacral spinal cord from the mesencephalic locomotor region. Acta Physiol. Scand., 87:320.PubMedCrossRefGoogle Scholar
  12. Heimer, L., and Wilson, R.D., 1975, The subcortical projections of the allocortex: Similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: “Golgi Centennial Symposium Proceedings,” M. Santini, ed., Raven Press, New York. p. 177.Google Scholar
  13. Herkenham, M., and Pert, C.B., 1981, Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature. 291:415.PubMedCrossRefGoogle Scholar
  14. Hokfelt, T., Skirboll, R., Rehfeld, J.F., Goldstein, M., Markey, K., and Dann, O., 1980, A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunohistochemistry combined with retrograde tracing, Neuroscience. 5:2093.PubMedCrossRefGoogle Scholar
  15. Hubner, C.B., and Koob, G.F., 1990, The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res., 508:20.PubMedCrossRefGoogle Scholar
  16. Jones, D.L., and Mogenson, G.J., 1980, Nucleus accumbens to globus pallidus GABA projection subserving ambulatory activity. Am. J. Physiol., 238:R63.Google Scholar
  17. Joyce, E.M., Stinus, L., and Iversen, S.D., 1983, Effect of injections of 6-OHDA into either nucleus accumbens septi or frontal cortex on spontaneous and drug-induced activity, Neuropharmacology. 22:1141.PubMedCrossRefGoogle Scholar
  18. Kalivas, P.W., Nemeroff, C.B., and Prange, A.J.Jr., 1984, Neurotensin microinjection into the nucleus accumbens antagonizes dopamine-induced increase in locomotion and rearing, Neuroscience. 4:919.CrossRefGoogle Scholar
  19. Kelley, A.E., and Domesick, V.B., 1982, The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: An anterograde and retrograde horseradish peroxidase study, Neuroscience. 7:2321.PubMedCrossRefGoogle Scholar
  20. Kelley, A.E., and Stinus, L., 1984, The distribution of the projection from the parataenial nucleus of the thalamus to the nucleus accumbens in the rat: An autoradiographic study, Exp. Brain Res., 54:499.PubMedCrossRefGoogle Scholar
  21. Kelly, P.H., and Iversen, S.D., 1976, Selective 6-OHDA-induced destruction of mesolimbic dopamine neurons: Abolition of psychostimulant-induced locomotor activity in rats, Eur. J. Pharmacol., 40:45.PubMedCrossRefGoogle Scholar
  22. Kelly, P.H., Seviour, P.W., and Iversen, S.D., 1975, Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res., 94:507.PubMedCrossRefGoogle Scholar
  23. Koob, G.F., and Bloom, F.E., 1988, Cellular and molecular mechanisms of drug dependence. Science, 242:715.PubMedCrossRefGoogle Scholar
  24. Koob, G.F., and Goeders, N., 1988, Neuroanatomical substrates of drug self-administration. In: “Neuropharmacological Basis of Reward,” J.M. Liebman, and S.J. Cooper, eds., Oxford University Press, Oxford, p. 214.Google Scholar
  25. Koob, G.F., Riley, S.J., Smith, S.C., andRobbins, T.W., 1978, Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat, J. Comp. Physiol. Psychol., 92:917.PubMedCrossRefGoogle Scholar
  26. Koob, G.F., and Swerdlow, N.R., 1988, Functional output of the mesolimbic dopamine system, Ann. NY Acad. Sci., 537:216.PubMedCrossRefGoogle Scholar
  27. Koob, G.F., Vaccarino, F.J., Amalric, M., and Bloom, F.E., 1987, Positive reinforcement properties of drugs: Search for neural substrates. In: “Brain Reward Systems and Abuse,” J. Engel, and L. Oreland, eds., Raven Press, New York. p. 35.Google Scholar
  28. Lyness, W.H., Friedle, N.M., and Moore, K.E., 1979, Destruction of dopaminergic nerve terminals in nucleus accumbens: Effect on damphetamine self-administration, Pharmacol. Biochem. Behav., 11:553.PubMedCrossRefGoogle Scholar
  29. Mogenson, G.J., and Nielsen, M., 1984a, A study of the contribution of hippocampal-accumbens-subpallidal projections to locomotor activity, Behav. Neural Biol., 42:38.PubMedCrossRefGoogle Scholar
  30. Mogenson, G.J., and Nielsen, M., 1984b, Neuropharmacological evidence to suggest that the nucleus accumbens and subpallidal regions contribute to exploratory locomotion, Behav. Neural Biol., 42:52.PubMedCrossRefGoogle Scholar
  31. Mogenson, G.J., and Nielson, M.A., 1983, Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity. Brain Res. Bull., 11:309.PubMedCrossRefGoogle Scholar
  32. Mogenson, G.J., Wu, M., and Jones, D.L., 1980, Locomotor activity elicited by injections of picrotoxin into the ventral tegmental area is attenuated by injections of GABA into the globus pallidus. Brain Res., 191:569.PubMedCrossRefGoogle Scholar
  33. Pettit, H.O., Ettenberg, A., Bloom, F.E., and Koob, G.F., 1984, Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats, Psychopharmacology. 84:167.PubMedCrossRefGoogle Scholar
  34. Pulvirenti, L., Swerdlow, N.R., and Koob, G.F., 1989, Microinjection of a glutamate antagonist into the nucleus accumbens reduces psychostimulant locomotion in rats, Neurosci. Lett., 103:197.CrossRefGoogle Scholar
  35. Pycock, C., and Horton, R., 1976, Evidence for an accumbens-pallidal pathway in the rat and its possible gabaminergic control. Brain Res., 110:629.PubMedCrossRefGoogle Scholar
  36. Robbins, T.W., and Koob, G.F., 1980, Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system, Nature. 285:409.PubMedCrossRefGoogle Scholar
  37. Roberts, D.C.S., Corcoran, M.E., and Fibiger, H.C., 1977, On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine, Pharmacol. Biochem. Behav., 6:615.PubMedCrossRefGoogle Scholar
  38. Roberts, D.C.S., Koob, G.F., Klonoff, P., and Fibiger, H.C., 1980, Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens, Pharmacol. Biochem. Behav., 12:781.PubMedCrossRefGoogle Scholar
  39. Roberts, D.C.S., Zis, A.P., and Fibiger, H.C., 1975, Ascending catecholamine pathways and amphetamine-induced locomotor activity: Importance of dopamine and apparent non-involvement of norepinephrine, Brain Res., 93:441.PubMedCrossRefGoogle Scholar
  40. Schneider, L.H., Alpert, J.E., and Iversen, S.D., 1983, CCK-8 modulation of mesolimbic dopamine: Antagonism of amphetamine-stimulated behaviors, Peptides, 4:749.PubMedCrossRefGoogle Scholar
  41. Skinner, R.D., and Garcia-Rill, E., 1984, The mesencephalic locomotor region (MLR) in the rat. Brain Res., 323:385.PubMedCrossRefGoogle Scholar
  42. Staunton, D.A., Magistretti, P.J., Koob, G.F., Shoemaker, W.J., and Bloom, F.E., 1982, Dopaminergic supersensitivity induced by denervation and chronic receptor blockade is additive. Nature. 299:72.PubMedCrossRefGoogle Scholar
  43. Swanson, L.W., Mogenson, G.J., Gerfen, C.R., and Robinson, P., 1984, Evidence for a projection from the lateral preoptic area and substantia innominata to the “mesencephalic locomotor region” in the rat. Brain Rec, 295:161.CrossRefGoogle Scholar
  44. Swerdlow, N.R., Amalric, M., and Koob, G.F., 1987, Nucleus accumbens opiate-dopamine interactions and locomotor activation in the rat: Evidence for a pre-synaptic locus, Pharmacol. Biochem. Behav., 26:765.PubMedCrossRefGoogle Scholar
  45. Swerdlow, N.R., and Koob, G.F., 1984, Neural substrates of apomorphine-stimulated locomotor activity following denervation of the nucleus accumbens. Life Sei., 35:2537.CrossRefGoogle Scholar
  46. Swerdlow, N.R., and Koob, G.F., 1985, Separate neural substrates of the locomotor-activating properties of amphetamine, caffeine and corticotropin releasing factor (CRF) in the rat, Pharmacol. Biochem. Behav., 23:303.PubMedCrossRefGoogle Scholar
  47. Swerdlow, N.R., and Koob, G.F., 1987a, Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopontine nucleus: Effects on locomotor activity mediated by nucleus accumbens-ventral pallidal circuitry, Brain Res., 412:233.PubMedCrossRefGoogle Scholar
  48. Swerdlow, N.R., and Koob, G.F., 1987b, Dopamine schizophrenia, mania and depression: Towards a unified hypothesis of cortico-striato-pallidothalamic function, Behav. Brain Sei., 10:197.CrossRefGoogle Scholar
  49. Swerdlow, N.R., Swanson, L.W., and Koob, G.F., 1984a, Electrolytic lesions of the substantia inominata and lateral preoptic area attenuate the “supersensitive” locomotor response to apomorphine resulting from denervation of the nucleus accumbens. Brain Res., 306:141.PubMedCrossRefGoogle Scholar
  50. Swerdlow, N.R., Swanson, L.W., and Koob, G.F., 1984b, Substantia innominata: Critical link in the behavioral expresssion of mesolimbic dopamine stimulation in the rat, Neurosci. Lett., 50:19.PubMedCrossRefGoogle Scholar
  51. Taghzouti, K., Simon, H., Louilot, A., Herman, J.P., and Le Moal, M., 1985, Behavioral study after local injection of 6-hydroxydopamine into the nucleus accumbens in the rat. Brain Res., 344:9.PubMedCrossRefGoogle Scholar
  52. Vaccarino, F.J., Amalric, M., Swerdlow, N.R., and Koob, G.F., 1986, Blockade of amphetamine-but not opiate-induced locomotion following antagonism of dopamine function in the rat, Pharmacol. Biochem. Behav., 24:61.PubMedCrossRefGoogle Scholar
  53. Vaccarino, F.J., Bloom, F.E., and Koob, G.F., 1985, Blockade of nucleus accumbens opiate receptors attenuates intravenous heroin reward in the rat, Psychopharmacology, 85:37.CrossRefGoogle Scholar
  54. Van der Kooy, D., Swerdlow, N.R., and Koob, G.F., 1983, Paradoxical reinforcing properties of apomorphine: Effects of nucleus accumbens and area postrema lesions, Brain Res., 259:111.PubMedCrossRefGoogle Scholar
  55. Van Ree, J.M., Gaffori, O., and De Wied, D., 1983, In rats the behavioral profile of CCK-8 related peptides resembles that of antipsychotic agents, Eur. J. Pharmacol., 93:63.PubMedCrossRefGoogle Scholar
  56. Walaas, I., and Fonnum, F., 1979, The effects of surgical and chemical lesions on neurotransmitter caudidates in the nucleus accumbens of the rat, Neuroscience. 4:209.PubMedCrossRefGoogle Scholar
  57. Wang, R.Y., and Hu, X-T, 1986, Does cholecystokinin potentiate dopamine action in the nucleus accumbens?. Brain Res., 380:363.PubMedCrossRefGoogle Scholar
  58. Weiss, F., Ettenberg, A., and Koob, G.F., 1989, CCK-8 injected into thenucleus accumbens attenuates the supersensitive locomotor response to apomorphine in 6-OHDA and chronic neuroleptic treated rats, Psychopharmacology, 99:409.PubMedCrossRefGoogle Scholar
  59. White, F.J., and Wang, R.Y., 1984, Interactions of cholecystokinin octapeptide and dopamine on nucleus accumbens neurons, Brain Res., 300:161.PubMedCrossRefGoogle Scholar
  60. Young, W.S., Alheid, G.F., and Heimer, L., 1984, The ventral pallidal projection to the mediodorsal thalamus: A study with fluorescent retrograde tracers and immunohistofluorescence, J. Neurosci., 4:1626.PubMedGoogle Scholar
  61. Zaborsky, L., Alheid, G.F., Alones, V.E., Oertel, W.H., Schmechel, D.E., and Heimer, L., 1982, Afferents of the ventral pallidum studied with a combined immunohistochemical-anterograde degeneration method, Soc. Neurosci. Abs., 8:218.Google Scholar
  62. Zito, K.A., Vickers, G., and Roberts, D.C.S., 1985, Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens, Pharmacol. Biochem. Behav., 23:1029.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • George F. Koob
    • 1
  • Neal R. Swerdlow
    • 1
  • Franco Vaccarino
    • 1
  • Carol Hubner
    • 1
  • Luigi Pulvirenti
    • 1
  • Friedbert Weiss
    • 1
  1. 1.Department of NeuropharmacologyResearch Institute of Scripps ClinicLa JollaUSA

Personalised recommendations