The Cholinergic Basal Forebrain: A Critical Role in Cortical Arousal

  • Kazue Semba
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 295)


Acetylcholine (ACh) has long been implicated in the regulation of arousal or wakefulness. However, the anatomical basis for this regulation had been missing because relatively little was known about the organization of central cholinergic pathways. During the last decade, however, specific immuno-histochemical markers became available, and by using these markers central cholinergic neurons have been mapped and their projections delineated (see Semba and Fibiger, 1989, for review). It is now well established that there are two major cholinergic projection systems in the CNS: cholinergic neurons in the basal forebrain project widely to the cerebral cortex, and those in the mesopontine tegmentum project heavily to the thalamus. Armed with these anatomical findings, researchers of behavioral state have begun to investigate the role of specific populations of central cholinergic neurons in the regulation of waking and sleep. One important conclusion which has emerged from such recent studies is that cholinergic neurons in the basal forebrain have a crucial role in cortical arousal. In the present paper, both anatomical and physiological evidence supporting this notion is discussed, and clues are explored as to how the activity of basal forebrain cholinergic neurons is regulated during different behavioral states.


Cholinergic Neuron Basal Forebrain Cortical Arousal Cholinergic Basal Forebrain Neuron sUbstantia Innominata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P., and Andersson, S. A., 1965, “Physiological Basis of the Alpha Rhythm”, Appleton-Century-Crofts, New York.Google Scholar
  2. Asanuma, C., 1989, Axonal arborizations of a magnocellular basal nucleus input and their relation to the neurons in the thalamic reticular nucleus of rats, Proc. Nat. Acad. Sci. U.S.A., 86:4746–4750.CrossRefGoogle Scholar
  3. Azmitia, E. C., 1978, The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei, in: “Handbook of Psychopharmacology, Vol. 9, Chemical Pathways in the Brain”, L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds., Plenum, New York, pp. 233–314.Google Scholar
  4. Bennett, T. L., 1971, Hippocampal theta activity and behavior-a review, Commun. Behav. Biol., 6:37–48.Google Scholar
  5. Bialowas, J., and Frotscher, M., 1987, Choline acetyltransferase-immunoreactive neurons and terminals in the rat septal complex: a combined light and electron microscopic study, J. Comp. Neurol., 259:298–307.PubMedCrossRefGoogle Scholar
  6. Buzsaki, G., Bickford, R. G., Ponomareff, G., Thai, L. J., Mandel, R., and Gage, F. H.-, 1988, Nucleus basalis and thalamic control of neocortical activity in the freely moving rat, J. Neurosci., 8:4007–4026.PubMedGoogle Scholar
  7. Casamenti, F., Deffenu, G., Abbamondi, A. L., and Pepeu, G., 1986, Changes in cortical acetylcholine output induced by modulation of the nucleus basalis, Brain Res. Bull., 16:689–695.PubMedCrossRefGoogle Scholar
  8. Chang, H. T., 1989, Noradrenergic innervation of the substantia innominata: a light and electron microscopic analysis of dopamine ß-decarboxylase immunoreactive elements in the rat, Exp. Neurol., 104:101–112.PubMedCrossRefGoogle Scholar
  9. Chang, H. T., and Kuo, H., 1989, Adrenergic innervation of the substantia innominata: co-localization of phenylethanolamine N-methyltransferase and tyrosine hydroxylase immunoreactivities within the same axons. Brain Res., 503:350–353.PubMedCrossRefGoogle Scholar
  10. Coben, L. A., Danziger, W., and Storandt, M., 1985, A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years, Electroenceph. Clin. Neurophysiol., 61: 101–112.PubMedCrossRefGoogle Scholar
  11. Collier, B., and Mitchell, J. F., 1967, The central release of acetylcholine during consciousness and after brain lesions, J. Physiol. (Lond.). 188:83–98.Google Scholar
  12. Detäri, L., Juhasz, G., and Kukorelli, T., 1984, Firing properties of cat basal forebrain neurones during sleep-wakefulness cycle, Electroenceph. Clin. Neurophysiol., 58:362–368.PubMedCrossRefGoogle Scholar
  13. Detäri, L., Juhasz, G., and Kukorelli, T., 1987, Neuronal firing in the pallidal region: firing patterns during sleep-wakefulness cycle in cats, Electroenceph. Clin. Neurophysiol., 67:159–166.PubMedCrossRefGoogle Scholar
  14. Detäri, L., and Vanderwolf, C. H., 1987, Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats. Brain Res., 437:1–8.PubMedCrossRefGoogle Scholar
  15. Detäri, L., Vanderwolf, C. H., and Kukorelli, T., J.990, Inhibitory connections in the basal forebrain: a possible explanation for the ambiguous role of BFA in the regulation of sleep and wakefulness, in: “The Diencephalon and Sleep”, M. Mancia and G. Marini, eds., Raven, New York, pp. 355–359.Google Scholar
  16. Donoghue, J. P., and Carroll, K. L., 1987, Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res., 408:367–371.PubMedCrossRefGoogle Scholar
  17. El Mansari, M., Sakai, K., and Jouvet, M., 1989, Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats, Exp. Brain Res., 76:519–529.PubMedCrossRefGoogle Scholar
  18. Fisher, R. S., Buchwald, N. A., Hull, C. D., and Levine, M. S., 1988, GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons, J. Comp. Neurol., 272:489–502.PubMedCrossRefGoogle Scholar
  19. Freund, T. F., and Antal, M., 1988, GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336:170–163.PubMedCrossRefGoogle Scholar
  20. Griffith, W. H., Sim, J. A., and Matthews, R. T., 1991, Electrophysiologic characteristics of basal forebrain neurons in vitro, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds. Plenum, New York.Google Scholar
  21. Hallanger, A. E., Levey, A. I., Lee, H. J., Rye, D. B., and Wainer, B. H., 1987, The origin of cholinergic and other subcortical afferents to the thalamus in the rat, J. Comp. Neurol., 262:105–124.PubMedCrossRefGoogle Scholar
  22. Hallanger, A. E., Price, S. D., Steininger, T., and Wainer, B. H., 1988, Mesopontine tegmental projections to the nucleus basalis of Meynert: an ultrastructural study, Soc. Neurosci. Abstr., 14:118Google Scholar
  23. Hallanger, A. E., and Wainer, B. H., 1988, Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat, J. Comp. Neurol., 274:483–515.PubMedCrossRefGoogle Scholar
  24. Hu, B., Steriade, M., and Deschênes, M., 1989, The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockade of spindle waves, Neurosci., 31:1–12.CrossRefGoogle Scholar
  25. Jacobs, B. L., 1987, Brain monoaminergic unit activity in behaving animals, Proc. Psychobiol. Phvsiol. Psvchol., 12:171–206.Google Scholar
  26. Jasper, H.H., and Tessier, J., 1971, Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science, 172:601–602.PubMedCrossRefGoogle Scholar
  27. Jones, B. E., and Cuello, A. C., 1989, Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons, Neurosci., 31:37–61.CrossRefGoogle Scholar
  28. Jourdain, A., Semba, K., and Fibiger, H. C., 1989, Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat. Brain Res., 505:55–65.PubMedCrossRefGoogle Scholar
  29. Jung, R., and Kornmüller, A. E., 1938, Eine Methodik der Ableitung lokalisierter Potentialschwankungen aus sucorticalen Hirnaebieten, Arch. Psychiat., 109:1–30.CrossRefGoogle Scholar
  30. Kanai, T., and Szerb, J. C., 1965, Mesencephalic reticular activating system and cortical acetylcholine output. Nature, 205:80–82.PubMedCrossRefGoogle Scholar
  31. Kayama, Y., Sumitomo, I., and Ogawa, T., 1986, Does the ascending cholinergic projection inhibit or excite neurons in the rat thalamic reticular nucleus? J. Neurophvsiol., 56:1310–1320.Google Scholar
  32. Köhler, C., Chan-Palay, V., and Jang-Yen, W., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain, Anat. Embryol., 169:41–44.PubMedCrossRefGoogle Scholar
  33. Kramis, R., Vanderwolf, C. H., and Bland, B. H., 1975, Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane and pentobarbital. Exp. Neurol., 49:58–85.PubMedCrossRefGoogle Scholar
  34. Lamour, Y., Dutar, P., and Jobert, A., 1984, Septo-hippocampal and other medial septum-diagonal band neurons: electrophysiological and pharmacological properties. Brain Res., 309:227–239.PubMedCrossRefGoogle Scholar
  35. Lamour, Y., Dutar, P., and Rascol, O., and Jobert, A., 1986, Basal forebrain neurons projecting to the rat frontoparietal cortex: electrophysiological and pharmacological properties, Brain Res., 362:122–132.PubMedCrossRefGoogle Scholar
  36. Levey, A. I., Hallanger, A., and Wainer, B. H., 1987, Cholinergic nucleus basalis neurons may influence the cortex via the thalamus, Neurosci. Lett., 74:7–13.PubMedCrossRefGoogle Scholar
  37. Lewis, P. R., and Shute, C. C. D., 1967, The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain, 90:521–540.PubMedCrossRefGoogle Scholar
  38. Livingstone, M. S., and Hubel, D. H., 1981, Effects of sleep and arousal on the processing of visual information in the cat. Nature, 291:554–561.PubMedCrossRefGoogle Scholar
  39. Longo, V. G., 1966, Behavioral and electroencephalographic effects of atropine and related compounds, Pharmacol. Rev., 18:965–996.PubMedGoogle Scholar
  40. Martinez-Murillo, R., Villalba, R. M., and Rodrigo, J., 1990, Immunocytochemical localization of cholinergic terminals in the region of the nucleus basalis magnocellularis of the rat: a correlated light and electron microscopic study, Neurosci., 36:361–376.CrossRefGoogle Scholar
  41. McCormick, D. A., and Prince, D. A., 1986, Acetylcholine induces burst firing in thalamic reticular neurons by activating a potassium conductance. Nature, 319:402–405.PubMedCrossRefGoogle Scholar
  42. McGinty, D. J., and Sterman, M. B., 1968, Sleep suppression after basal forebrain lesions in the cat. Science, 160:1253–1255.PubMedCrossRefGoogle Scholar
  43. McGinty, D., and Szymusiak, R., 1988, Neuronal unit activity patterns in behaving animals: brainstem and limbic system, Ann. Rev. Psychol., 39:135–168.CrossRefGoogle Scholar
  44. Metherate, R., Tremblay, N., and Dykes, R. W., 1987, Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortex, Neurosci., 22:75–81.CrossRefGoogle Scholar
  45. Morruzi, G., and Magoun, H. W., 1949, Brainstem reticular formation and activation of the EEG, Electroenceph. Clin. Neurophysiol., 1:455–473.Google Scholar
  46. Napier, T. C., and Potter, P. E., 1989, Dopamine in the rat ventral pallidum/substantia innominata: biochemical and electrophysiological studies, Neuropharmacol., 28:757–760.CrossRefGoogle Scholar
  47. Nicoll, R. A., 1985, The septo-hippocampal projection: a model cholinergic pathway, TINS, December, 533–536.Google Scholar
  48. Panula, P., Yang, H.-Y. T., and Costa, E., 1984, Histamine-containing neurons in the rat hypothalamus, Proc. Natl. Acad. Sci. U.S.A., 81:2572–2576.PubMedCrossRefGoogle Scholar
  49. Pirch, J., Rigdon, G., Rucker, H., and Turco, K., 1991, Basal forebrain modulation of cortical cell activity during conditioning, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds., Plenum, New York. 7.Google Scholar
  50. Porter, L. L., and Asanuma, C., 1989, Ultrastructural and immunohistochemical observations on a projection from the magnocellular basal forebrain in rats, Soc. Neurosci. Abstr., 15:289.Google Scholar
  51. Rasmusson, D. D., and Dykes, R. W., 1988, Long-term enhancement of evoked potentials in cat somatosensory cortex produced by co-activation of the basal forebrain and cutaneous receptors, Exp. Brain Res., 70:276–286.PubMedCrossRefGoogle Scholar
  52. Reiner, P. B., Semba, K., Fibiger, H. C., and McGeer, E. G., 1987, Physiological evidence for subpopulations of cortically projecting basal forebrain neurons in the anesthetized rat, Neurosci., 20:629–636.CrossRefGoogle Scholar
  53. Richardson, R. T., and DeLong, M. R., 1991, Electrical studies of the function of the nucleus basalis in primates, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds, Plenum, New York.Google Scholar
  54. Rolls, E. T., Canghera, M. K., and Roper-Hall, A., 1979, The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res., 164:121–135.PubMedCrossRefGoogle Scholar
  55. Rye, D. B., Wainer, B. H., Mesulam, M.-M., Mufson, E. J., and Saper, C. B., 1984, Cortical Projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyl-transferase, Neurosci., 13:627–643.CrossRefGoogle Scholar
  56. Sato, H., Rata, Y., Hagihara, K., and Tsumoto, T., 1987, Effects of cholinergic depletion on neuron activities in the cat visual cortex, J. Neurophvsiol., 58:781–794.Google Scholar
  57. Satoh, K., and Fibiger, H. C., 1986, Cholinergic neurons of the laterodorsal tegmental nucleus: Efferent and afferent connections, J. Comp Neurol., 253:277–302.PubMedCrossRefGoogle Scholar
  58. Schwaber, J. S., Rogers, W. T., Satoh, K., and Fibiger, H. C., 1987, Distribution and organization of cholinergic neurons in the rat forebrain demonstrated by computer-aided data acquisition and three-dimensional reconstruction, J. Comp. Neurol., 263:309–325.PubMedCrossRefGoogle Scholar
  59. Semba, K., and Fibiger, H. C., 1988, Time of origin of cholinergic neurons in the rat basal forebrain, J. Comp. Neurol., 269:87–95.PubMedCrossRefGoogle Scholar
  60. Semba, K., and Fibiger, H. C., 1989, Organization of central cholinergic systems. Proc. Brain Res., 79:37–63.CrossRefGoogle Scholar
  61. Semba, K., and Fibiger, C. H., Forebrain afferents to the magnocellular basal forebrain of the rat, in preparation.Google Scholar
  62. Semba, K., Reiner, P. B., McGeer, E. G., and Fibiger, H. C., 1988a, Non-cholinergic basal forebrain neurons project to the contralateral basal forebrain in the rat, Neurosci. Lett., 84:23–28.PubMedCrossRefGoogle Scholar
  63. Semba, K., Reiner, P. B., McGeer, E. G., and Fibiger, H. C., 1988b, Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohisto-chemistry, and electrophysiology in the rat, J. Comp. Neurol., 267:433–453.PubMedCrossRefGoogle Scholar
  64. Semba, K., Reiner, P. B., McGeer, E. G., and Fibiger, H. C., 1989, Brainstem projecting neurons in the rat basal forebrain: neurochemical, topographical, and physiological distinctions from cortically projecting cholinergic neurons. Brain Res. Bull., 22:501–509.PubMedCrossRefGoogle Scholar
  65. Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain., 90:497–520.PubMedCrossRefGoogle Scholar
  66. Sillito, A. M., and Kemp, J. A., 1983, Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res., 289:143–155.PubMedCrossRefGoogle Scholar
  67. Skinner, B. F., 1974, “About Behavioralism”, Alfred A. Knopf, New York.Google Scholar
  68. Spehlmann, R., Daniels, J. C., and Smathers, C. C., Jr., 1971, Acetylcholine and the synaptic transmission of specific impulses to the visual cortex. Brain. 94:125–138.PubMedCrossRefGoogle Scholar
  69. Starzl, T.E., Taylor, C.W., and Magoun, H.W., 1951, Ascending conduction in reticular activating system, with special reference to the diencephalon, J. Neurophvsiol., 14:461–477.Google Scholar
  70. Steinbusch, H. W. M., and Mulder, A. H., 1984, Immunohisto-chemical localization of histamine neurons and mast cells in the rat brain, in: “Handbook of Chemical Neuroanatomy, Vol. 3: Classical Transmitters and Transmitter Receptors in the CNS, Part II”, A. Björklund, T. Hökfelt, and M. J. Kuhar, eds., Elsevier, Amsterdam, pp. 126–140.Google Scholar
  71. Steriade, M., 1981, Mechanisms underlying cortical activation: neuronal organization and properties of the midbrain reticular core and intralaminar thalamic nuclei, in: “Brain Mechanisms and Perceptual Awareness”, O. Pompeiano, and C. Ajmone Marsan, eds., Raven, New York, pp. 327–377.Google Scholar
  72. Steriade, M., Datta, S., Paré, D., Oakson, G., and Curro Dossi, R., 1990, Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems, J. Neurosci., 10:2541–2559.PubMedGoogle Scholar
  73. Steriade, M. and Deschênes, M., 1984, The thalamus as a neuronal oscillator. Brain Res. Rev., 8:1–63.CrossRefGoogle Scholar
  74. Steriade, M., and McCarley, R. W., 1990, “Brainstem Control of Wakefulness and Sleep”, Plenum, New York.Google Scholar
  75. Steriade, M., Parent, A., Paré, D., and Smith, Y., 1987, Cholinergic and non-cholinergic neurons of the cat basal forebrain project to the reticular and mediodorsal thalamic nuclei. Brain Res., 408:372–376.PubMedCrossRefGoogle Scholar
  76. Sterman, M. B., and Clemente, C. D., 1962, Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat, Exp. Neurol., 6:103–117.PubMedCrossRefGoogle Scholar
  77. Stewart, D. J., MacFabe, D. F., and Vanderwolf, C. H., 1984, Cholinergic activation of electrocorticogram: role of the substantia innominata and effects of atropine and quinuclidinyl benzilate. Brain Res., 322:219–232.PubMedCrossRefGoogle Scholar
  78. Stewart, M., and Fox, S. E., 1989, Two populations of rhythmically bursting neurons in rat medial septum are revealed by atropine, J. Neurophysiol., 61:982–993.PubMedGoogle Scholar
  79. Stewart, M., and Fox, S. E., 1990, Do septal neurons pace the hippocampal theta rhythm? TINS, 13:163–168.PubMedGoogle Scholar
  80. Stumpf, C., 1965, Drug action on the electrical activity of the hippocampus. Int. Rev. Neurobiol., 7:77–138.CrossRefGoogle Scholar
  81. Swanson, L. W., and Hartman, B. K., 1975, The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-ß-hydroxylase as a marker, J. Comp. Neurol., 163:467–506.PubMedCrossRefGoogle Scholar
  82. Szymusiak, R., and McGinty, D., 1986, Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res., 370:82–92.PubMedCrossRefGoogle Scholar
  83. Szymusiak, R., and McGinty, D., 1989, Sleep-waking discharges of basal forebrain projection neurons in cats. Brain Res. Bull., 22:423–430.PubMedCrossRefGoogle Scholar
  84. Vanderwolf, C. H., 1969, Hippocampal electrical activity and voluntary movement in the rat, Electroenceph. Clin. Neurophysiol., 26:407–418.PubMedCrossRefGoogle Scholar
  85. Vanderwolf, C. H., 1988, Cerebral activity and behavior: control by central cholinergic and serotonergic systems. Int. Rev. Neurobiol., 30, 225–340.PubMedCrossRefGoogle Scholar
  86. Vanderwolf, C.H., and Baker, G. B., 1986, Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res., 374:342–356.PubMedCrossRefGoogle Scholar
  87. Vanderwolf, C. H., and Robinson, T. E., 1981, Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis, Behav. Brain Sci., 4:459–514.CrossRefGoogle Scholar
  88. Vanderwolf, C. H., and Stewart, D. J., 1988, Thalamic control of neocortical activation: a critical re-evaluation. Brain Res. Bull., 20:529–638.PubMedCrossRefGoogle Scholar
  89. Vanni-Mercier, G., Sakai, K., and Jouvet, M., 1984, “Waking-state specific” neurons in the caudal hypothalamus of the cat, C. R. Acad. Sci., 298:195–220.Google Scholar
  90. Vincent, S. R., Satoh, K., Armstrong, D. M., and Fibiger, H.C., 1983, Substance P in the ascending cholinergic reticular system. Nature, 306:688–691.PubMedCrossRefGoogle Scholar
  91. Wilson, F. A. W., 1991, The relationship between learning, memory and neuronal responses in the primate basal forebrain, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds. Plenum, New York.Google Scholar
  92. Wilson, F. A. W., and Rolls, E. T., 1990, Neuronal responses related to the novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain, Exp. Brain Res., 80:104–120.PubMedCrossRefGoogle Scholar
  93. Watanabe, T., Taguchi, Y., Shiosaka, S., Tanaka, J., Kubota, H., Terano, T., Tohyama, M., and Wada, H., 1984, Distribution of the histaminergic neuron system in the central nervous system of rats: a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res., 295:13–25.PubMedCrossRefGoogle Scholar
  94. Zaborszky, L., 1989, Afferent connections of the forebrain cholinergic projection neurons, with special reference to monoaminergic and peptidergic fibers, in “Central Cholinergic Synaptic Transmission”, M. Frotscher, and U. Misgeld, eds, Birkhauser, Basel, pp. 12–32.CrossRefGoogle Scholar
  95. Zaborszky, L., Cullinan, W. E., and Braun, A., 1991, Afferents to basal forebrain cholinergic projection neurons: an update, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds. Plenum, New York.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kazue Semba
    • 1
  1. 1.Department of AnatomyDalhousie UniversityHalifax, N.S.Canada

Personalised recommendations